Exercise sheet 9

The minimum passing average is 20 points per sheet.

- 1. 5 points. Formation of stalks is t-exact. That is, let X be a topological space and let $x \in X$ be a point. Write also $x : \text{pt} \hookrightarrow X$ for the inclusion. Then the functor $x^* : \text{Shv}(X; R) \to \text{Shv}(\text{pt}; R) \simeq \mathbf{D}(R)$ is t-exact.
 - Hint: if \mathcal{F} is n-coconnective, check that the mapping type Maps $(R[n+1], x^*\mathcal{F})$ is contractible by expressing $x^*\mathcal{F}$ as a certain colimit over open neighbourhoods $U \ni x$, and using the fact that R[n+1] is a compact object of $\mathbf{D}(R)$.
- 2. 5 points. Connectivity can be detected on stalks. That is, let X be a topological space and $\mathcal{F} \in \text{Shv}(X)$ a sheaf. Then \mathcal{F} is n-connective if and only if $x^*\mathcal{F}$ is n-connective for every point $x \in X$.
 - Hint: note that \mathcal{F} is *n*-connective if and only if $\tau_{\leq n-1}(\mathcal{F}) \simeq 0$. Note that $\tau_{\leq n-1}(\mathcal{F})$ lies in the left completion $\widehat{\operatorname{Shv}}(X)$, and recall that a morphism $\mathcal{F} \to \mathcal{G}$ in $\widehat{\operatorname{Shv}}(X)$ is invertible if and only if $x^*(\mathcal{F}) \to x^*(\mathcal{G})$ is invertible for every point $x \in X$.
- 3. 5 points. Give an example of a proper morphism $f: X \to Y$ in $Sch^{lft}_{\mathbf{C}}$ such that f_* is not t-exact.
- 4. 5 points. Check that f^* , for any morphism $f: X \to Y$ in $\operatorname{Sch}^{\operatorname{lft}}_{\mathbf{C}}$, preserves constructibility. Check that if $\mathcal{F}, \mathcal{G} \in \operatorname{Shv}_{\mathbf{c}}(X)$, then also $\mathcal{F} \otimes \mathcal{G}$ is constructible.
- 5. 10 points. Let $X \in \operatorname{Sch}^{\mathrm{lft}}_{\mathbf{C}}$ and let $X = \bigcup_{\alpha} U_{\alpha}$ be an open cover. Check that $\mathcal{F} \in \operatorname{Shv}(X)$ is constructible iff $\mathcal{F}|_{U_{\alpha}}$ is constructible for all α .
- 6. 5 points. Show that the previous exercise fails for analytic open covers.

1