
SELECTED SOLUTIONS

Sheet 6, no. 1. Let X “ r0, 1s be the unit interval.

(1) Let F P ShvpXq be a locally constant sheaf which is discrete, i.e., F P Loc˛pXqr0,0s.
Show that there exists a finite open cover X “

Ť

1ďiďn Ui such that each F|Ui is
constant, satisfying moreover the following properties:
(a) Each Ui is an open interval.
(b) 0 P U1, and for i ą 1 each Ui X Ui´1 is a nonempty open interval.
(c) Each union Vi :“ U1 Y U2 Y ¨ ¨ ¨ Y Ui is an open interval.

(2) Show that for each i, the commutative square of restriction maps

ΓpVi,Fq ΓpVi´1,Fq

ΓpUi,Fq ΓpUi X Vi´1,Fq

is a pullback square in DpRq, and all arrows are isomorphisms.
(3) Deduce that F is constant on X.

Solution. We explain the proof of (2). In fact, we will let F P Loc˛pXq be arbitrary, not
necessarily discrete.

The square is a pullback by the sheaf condition for F. Since F|Ui is constant, so is
F|UiXVi´1 . Let K P DpRq such that F » KUi

. Recall that since Ui is contractible, the
functor a˚

i : Shvpptq Ñ ShvpUiq is fully faithful, where ai : Ui Ñ pt is the projection. In
particular, we have ΓpUi,Fq » ai,˚a

˚
i pKq » K. The same holds for the interval Vi´1,

as well as the (nonempty) intersection of intervals Ui X Vi´1. It follows that the lower
and right-hand restriction maps are identified with idK : K Ñ K. Since the square is a
pullback, the upper and left-hand arrows are thus also isomorphisms.

Lemma 1. Let X be a contractible topological space. Then F is constant if and only if
the counit a˚a˚pFq Ñ F is an isomorphism, where a : X Ñ pt is the projection.

Proof. The condition is clearly sufficient, as it means F » KX where K :“ a˚pFq »

ΓpX,Fq.

Conversely, suppose F is constant, i.e., F » KX » a˚pKq for some K P DpRq. Consider
the diagram

a˚pKq
a˚unit
ÝÝÝÝÑ a˚a˚a

˚pKq
counitpa˚Kq
ÝÝÝÝÝÝÝÝÑ a˚pKq.

By the triangle identities for the adjunction pa˚, a˚q, this composite is the identity
of a˚pKq. Since X is contractible, the unit id Ñ a˚a

˚ is an isomorphism. By the
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two-of-three property for isomorphisms, it follows that the second arrow is also an
isomorphism. □

Lemma 2. Let X be a topological space and F P ShvpXq. Let X “
Ť

i Ui be an open
cover such that each Ui is contractible, each F|Ui is constant, and each restriction map

ΓpX,Fq Ñ ΓpUi,Fq

is an isomorphism. Then the counit a˚a˚pFq Ñ F is an isomorphism. In particular, F
is constant.

Proof. Let ji : Ui ãÑ X be the inclusions and a : X Ñ pt, ai : Ui Ñ pt the projections.
By assumption, the units a˚pFq Ñ a˚ji,˚j

˚
i pFq » ai,˚pF|Uiq are isomorphisms. To show

that a˚a˚pFq Ñ F is an isomorphism it will suffice to show that it restricts to an
isomorphism over every open Ui. Each such restriction is identified with

a˚
i a˚pFq Ñ F|Ui .

Using the isomorphism a˚pFq » ai,˚pF|Uiq, we may rewrite this as

counit : a˚
i ai,˚pF|Uiq Ñ F|Ui ,

which is invertible in view of the previous lemma, since F|Ui is constant and Ui is
contractible. □

Finally, to prove (3), let us show by induction that F|Vi is constant for each i. The case
i “ 1 holds by assumption. Assume i ą 1 and F|Vi´1 is constant. Now Ui and Vi´1 are
both contractible (they are open intervals), so by (2) we may apply the previous lemma
to deduce that F|Vi is constant. In particular, F is constant on Vn “ X.

Sheet 7, no. 1. Show that a˚ : Loc˛pptq Ñ Loc˛pr0, 1sq is an equivalence, where
a : r0, 1s Ñ pt is the projection, by reducing to the case of discrete locally constant
sheaves considered in Sheet 6. (Note that the claim is equivalent to the assertion that
every locally constant sheaf on r0, 1s is constant.)

Solution. Recall that for any space X, the functor a˚ is right t-exact, where a : X Ñ pt.
We begin by observing that it is in fact t-exact (even though X need not be a topological
manifold, i.e., a need not be a topological submersion):

Lemma 3. Let X be a topological space and consider the projection a : X Ñ pt. Then
the functor a˚ : Shvpptq Ñ ShvpXq is t-exact.

Proof. It will suffice to show that a˚ is left t-exact, i.e., preserves coconnectivity. Assume
first that K P DpRqr´n,0s » Shvpptqr´n,0s for some n ě 0. We argue by induction on n
that a˚pKq » KX lies in ShvpXqr´n,0s. For n “ 0 the claim follows from the fact that
MX P ShvpXqr0,0s for any M P ModR (see Prop. 3.6.45 in the lecture notes). For n ą 0,
consider the exact triangle

τě´n`1pKq Ñ K Ñ τ´npKq » H´npKqr´ns.

By the induction hypothesis, a˚ sends the left-hand term to ShvpXqr´n`1,0s. By the
n “ 0 case (and shifting), it sends the right-hand term to ShvpXqr´n,´ns. It follows that
a˚pKq is an extension of objects in ShvpXqr´n,0s and hence itself belongs to ShvpXqr´n,0s.
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Now suppose that K P DpRqď0. We may write K » lim
ÝÑně0

τě´npKq. Since a˚ is a left

adjoint, it preserves colimits and so a˚pKq » lim
ÝÑně0

a˚pτě´npKqq. By the discussion

above, each term lies in ShvpXqr´n,0s and in particular is coconnective. Since this is a
filtered colimit, and the standard t-structure is compatible with filtered colimits (by
Prop. 3.6.37), we deduce that a˚pKq is coconnective. □

Recall that, since the space I “ r0, 1s is a CW complex, a sheaf F P ShvpIq is locally
constant if and only if the cohomology sheaves HipFq are discrete locally constant
sheaves for all i P Z. In particular, F is locally constant if and only if τě´npFq is locally
constant for all n ě 0. Thus, the limit diagram (witnessing the right completeness of
the standard t-structure)

ShvpIq Ñ ¨ ¨ ¨ Ñ ShvpIqě´2
τě´1
ÝÝÝÑ ShvpIqě´1

τě0
ÝÝÑ ShvpIqě0

restricts to Loc˛pIq » lim
ÐÝně0

Loc˛pIqě´n. The same is obviously true for pt in place of

I, so we have the following diagram where both rows are limit diagrams:

Loc˛pptq ¨ ¨ ¨ Loc˛pptqě´2 Loc˛pptqě´1 Loc˛pptqě0

Loc˛pIq ¨ ¨ ¨ Loc˛pIqě´2 Loc˛pIqě´1 Loc˛pIqě0

a˚

τě´1

a˚

τě0

a˚ a˚

τě´1 τě0

Since a˚ is right t-exact, it restricts to functors

a˚ : Loc˛pptqě´n Ñ Loc˛pIqě´n (0.1)

for each n such that the diagram commutes. Thus, it will suffice to show that (0.1) is
an equivalence for any n.

Similarly, since ShvpXq is also left complete where X is I or pt (since these are CW
complexes), and a˚ is also left t-exact, we also have the following commutative diagram
where both rows are limit diagrams:

Loc˛pptq ¨ ¨ ¨ Loc˛pptqď2 Loc˛pptqď1 Loc˛pptqď0

Loc˛pIq ¨ ¨ ¨ Loc˛pIqď2 Loc˛pIqď1 Loc˛pIqď0.

a˚

τď1

a˚

τď0

a˚ a˚

τď1 τď0

In particular, for any fixed n ě 0, the functor (0.1) is the limit of a˚ : Loc˛pptqr´n,ms Ñ

Loc˛pIqr´n,ms over m ě 0.

Thus let F P Loc˛pIqr´n,ms and let us show that F is constant. Shifting, we may as well
assume that F P Loc˛pIqr0,bs for some integer b ě 0. We argue by induction on b, the
case b “ 0 already known from the previous exercise. Let b ą 0 and consider the exact
triangle

H´bpFqrbs » τěbpFq Ñ F Ñ τďb´1pFq.

Since the right-hand term lies in Loc˛pIqr0,b´1s, the induction hypothesis yields that it
is constant. Since the left-hand term lies in Loc˛pIqr0,0s up to shifting, the case b “ 0
implies that it is also constant. So it will suffice to show that any extension of constant
sheaves is constant.
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Lemma 4. Let X be a contractible topological space and suppose given an exact triangle

KX Ñ F Ñ LX

in ShvpXq, where K,L P DpRq. Then F is constant.

Proof. Rotating, we may write F as the cofibre of the boundary map B : LXr´1s Ñ KX .
Using the fully faithfulness of a˚ : Shvpptq Ñ ShvpXq, we may write

MapsShvpXqpLXr´1s,KXq » MapsShvpXqpa
˚pLr´1sq, a˚pKqq » MapsDpRqpLr´1s,Kq.

Thus the boundary map B can be written as a˚pBq for some B : Lr´1s Ñ K in DpRq.
Setting M :“ CofibpB : Lr´1s Ñ Kq, this latter can be regarded as the boundary map
for the exact triangle

K Ñ M Ñ L.

By exactness of a˚, we thus have MX “ a˚pMq » F. □

(In fact, what this shows is that the full subcategory of ShvpXq spanned by constant
sheaves is a stable subcategory, when X is contractible.)

Sheet 8, no. 3.

(1) Let i : pt ãÑ A1 be the inclusion of the origin, where pt “ SpecpCq, and let
j : Gm ãÑ A1 be the inclusion of the complement. Compute i˚j˚pRq.

(2) Generalize the calculation to the case of a vector bundle E Ñ X, with i : X ãÑ E

the zero section and j : E̊ ãÑ E the inclusion of the complement.
(3) Let i : pt ãÑ A1 and j : Gm ãÑ A1 be as in (1). Let L be a locally constant sheaf

on Gm. Using the equivalence Loc˛pC˚;Rq » FunpΠ8pC˚q,DpRqq, identify L

with an object K P DpRq together with a monodromy automorphism T : K
„
ÝÑ K,

or equivalently an object rK P DpRrT, T´1sq.
Show that i˚j˚pLq P Shvppt;Rq » DpRq is identified with the homotopy

invariants rKhT . (Equivalently, this is the mapping complex MapsRrT,T´1spR, rKq,

where R is regarded as an RrT, T´1s-module via the trivial augmentation T ÞÑ 1.)

Solution. We explain the proof of (2). Let p : E Ñ X be a vector bundle and consider
the diagram

X E E̊

X.

i j

p
q

We begin by recalling the dual Euler transformation

i!p˚ :“ Σ´E eul_E
ÝÝÝÑ id,

which is dual to eulE : id Ñ ΣE . Recall that this is defined as

i!p˚ Ex˚!

ÝÝÝÑ i˚p˚ » id
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using the exchange transformation Ex˚! : i! Ñ i˚ coming from the pullback square

X X

X E.

i

i

Unravelling the definitions, this is given by the composite

Ex˚! : id˚i!
unit
ÝÝÑ id!id!id

˚i! » id!i˚i!i
! counit

ÝÝÝÝÑ id!i˚,

where the isomorphism is the base change formula for the pullback square above. In
other words, the dual Euler transformation can be expressed as

i!p˚ » i˚i˚i
!p˚ counit

ÝÝÝÝÑ i˚p˚ » id.

In particular, it fits into the localization triangle

i!p˚ eul_E
ÝÝÝÑ i˚p˚ unit

ÝÝÑ i˚j˚j
˚p˚ » i˚j˚q

˚.

We conclude that:

Lemma 5. Let p : E Ñ X be a vector bundle over a scheme X P SchlftC . Then with
notation as above,

i˚j˚q
˚p´q » Cofibpeul_E : Σ´E Ñ idq.

In particular, i˚j˚pRq » Cofibpeul_E : Rx´Ey Ñ Rq in ShvpXq.

Using the inverse ΣE to Σ´E , we have the identification of mapping complexes

HompRx´Ey, Rq » HompR,RxEyq » C‚pX;RqxEy,

under which eul_E : Rx´Ey Ñ R is identified with the Euler class epEq. Via the Thom
isomorphism RxEy » Rr2rs, we may further identify

C‚pX;RqxEy » C‚pX;Rqr2rs,

where r “ rkpEq, under which epEq corresponds to the top Chern class c2rpEq. Given
a null-homotopy epEq » 0, we thus obtain

i˚j˚pRq » CofibpRr´2rs
0
ÝÑ Rq » Rr´2r ` 1s ‘ R.

For example, recall that there is a canonical such null-homotopy whenever p : E Ñ X
admits a nowhere zero section s. This is in particular the case when E admits A1

X as a
direct summand, so in particular we have i˚j˚pRq » R ‘ Rr´1s in the case of (1).

In general however, i˚j˚pRq is just an extension via the exact triangle

R Ñ i˚j˚pRq
c2rpEq
ÝÝÝÝÑ Rr´2r ` 1s

which is non-split if c2rpEq is nonzero. For example, let X “ P1
C and let E be the total

space of Op2q. Then c1pEq P C‚pP1
C;Rqr2s is nonzero, as can be seen e.g. by inspection

of the projective bundle formula.


