SELECTED SOLUTIONS

Sheet 6, no. 1. Let X = [0, 1] be the unit interval.

(1) LetF € Shv(X) be a locally constant sheaf which is discrete, i.e., I € Loc®(X)o,0]-
Show that there exists a finite open cover X = Ulgisn Ui such that each F|y, is
constant, satisfying moreover the following properties:

(a) Each U; is an open interval.
(b) 0 € Uy, and fori > 1 each U; n U;—1 is a nonempty open interval.
(¢) Each union V; :=U; v Uy U --- U U; is an open interval.

(2) Show that for each i, the commutative square of restriction maps

rv;,¥) —— I'(Vic1,9)

| |

F(Ui,ff) —_— F(Ui M ‘/1;1,3'“)

is a pullback square in D(R), and all arrows are isomorphisms.
(3) Deduce that F is constant on X.

Solution. We explain the proof of (2). In fact, we will let F € Loc®(X) be arbitrary, not
necessarily discrete.

The square is a pullback by the sheaf condition for F. Since F|y, is constant, so is
Flv;~vi_,- Let K € D(R) such that ¥ ~ K. Recall that since U; is contractible, the
functor a : Shv(pt) — Shv(U;) is fully faithful, where a; : U; — pt is the projection. In
particular, we have I'(U;, F) ~ a;«a] (K) ~ K. The same holds for the interval V;_i,
as well as the (nonempty) intersection of intervals U; n V;_;. It follows that the lower
and right-hand restriction maps are identified with idg : K — K. Since the square is a
pullback, the upper and left-hand arrows are thus also isomorphisms.

Lemma 1. Let X be a contractible topological space. Then F is constant if and only if
the counit a*a.(F) — F is an isomorphism, where a : X — pt is the projection.

Proof. The condition is clearly sufficient, as it means F ~ Ky where K := a,(F) ~
X, 9).

Conversely, suppose J is constant, i.e., F ~ K x ~ a*(K) for some K € D(R). Consider
the diagram

a*(K) W 0% g0 (K) counit(a®K) a* (K).
By the triangle identities for the adjunction (a*,ay), this composite is the identity
of a*(K). Since X is contractible, the unit id — aa™ is an isomorphism. By the
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two-of-three property for isomorphisms, it follows that the second arrow is also an
isomorphism. O

Lemma 2. Let X be a topological space and F € Shv(X). Let X = J; U; be an open
cover such that each U; is contractible, each F|y, is constant, and each restriction map

NX,¥) - I'(U;,9)

is an isomorphism. Then the counit a*a.(F) — F is an isomorphism. In particular, F
18 constant.

Proof. Let j; : U; — X be the inclusions and a : X — pt, a; : U; — pt the projections.
By assumption, the units a«(F) — axji«j5(F) ~ a; «(F|v,) are isomorphisms. To show
that a*a.(F) — F is an isomorphism it will suffice to show that it restricts to an
isomorphism over every open U;. Each such restriction is identified with

ala.(F) - Fly,.
Using the isomorphism a.(JF) >~ a; +(F|v,), we may rewrite this as
counit : a} a; «(Fly,) — Flu,,

which is invertible in view of the previous lemma, since |y, is constant and U; is
contractible. O

Finally, to prove (3), let us show by induction that F|y; is constant for each i. The case
i = 1 holds by assumption. Assume ¢ > 1 and F|y,_, is constant. Now U; and V;_; are
both contractible (they are open intervals), so by (2) we may apply the previous lemma
to deduce that F|y, is constant. In particular, F is constant on V;, = X.

Sheet 7, no. 1. Show that a* : Loc®(pt) — Loc®([0,1]) is an equivalence, where
a : [0,1] — pt is the projection, by reducing to the case of discrete locally constant
sheaves considered in Sheet 6. (Note that the claim is equivalent to the assertion that
every locally constant sheaf on [0, 1] is constant.)

Solution. Recall that for any space X, the functor a* is right t-exact, where a : X — pt.
We begin by observing that it is in fact t-exact (even though X need not be a topological
manifold, i.e., @ need not be a topological submersion):

Lemma 3. Let X be a topological space and consider the projection a : X — pt. Then
the functor a* : Shv(pt) — Shv(X) is t-exact.

Proof. Tt will suffice to show that a* is left t-exact, i.e., preserves coconnectivity. Assume
first that K € D(R)[_y 0] =~ Shv(pt)[_p 0] for some n > 0. We argue by induction on n
that a*(K) ~ K x lies in Shv(X)[_, o). For n = 0 the claim follows from the fact that
M x € Shv(X)[o,0) for any M € Modpg (see Prop. 3.6.45 in the lecture notes). For n > 0,
consider the exact triangle

o1 (K) = K — 7o (K) = H_y (K)[n].
By the induction hypothesis, a* sends the left-hand term to Shv(X)[_,11,0- By the

n = 0 case (and shifting), it sends the right-hand term to Shv(X)_, _,. It follows that
a*(K) is an extension of objects in Shv(X)[_y, o; and hence itself belongs to Shv(X)[_, o-
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Now suppose that K € D(R)<o. We may write K ~ lim _ 7>, (K). Since a* is a left
adjoint, it preserves colimits and so a*(K) ~ lim _ a*(7>_n(K)). By the discussion
above, each term lies in Shv(X)[_, g) and in particular is coconnective. Since this is a
filtered colimit, and the standard t-structure is compatible with filtered colimits (by

Prop. 3.6.37), we deduce that a*(K) is coconnective. O

Recall that, since the space I = [0,1] is a CW complex, a sheaf F € Shv([) is locally
constant if and only if the cohomology sheaves H!(F) are discrete locally constant
sheaves for all i € Z. In particular, F is locally constant if and only if 7>_,,(F) is locally
constant for all n > 0. Thus, the limit diagram (witnessing the right completeness of
the standard t-structure)

Shv(I) — -+ — Shv(I)s_y == Shv(I)>_1 =% Shv(I)s¢

restricts to Loc®(I) ~ lim _ Loc®(I)>—,. The same is obviously true for pt in place of

I, so we have the following diagram where both rows are limit diagrams:

Loc®(pt) o y Loc®(pt)s—2 —— Loc®(pt)s—1 — Loc®(pt)=o
J== J== Je= J==
Loc®(I) Yoo s Loc®(I)s—9 —— Loc®(I)>_1 —=2+ Loc®(I)=o

Since a* is right t-exact, it restricts to functors
a* : Loc®(pt)s—pn — Loc®(I)s—p (0.1)

for each n such that the diagram commutes. Thus, it will suffice to show that (0.1) is
an equivalence for any n.

Similarly, since Shv(X) is also left complete where X is I or pt (since these are CW
complexes), and a* is also left t-exact, we also have the following commutative diagram
where both rows are limit diagrams:

Loc®(pt) Loc®(pt) <o —— Loc®(pt)<1 —— Loc®(pt) <o
J== J== J== J==
Loc®(I) » Loc®(I)<g — Loc®(I)<; ——2 Loc®(I)<o.

In particular, for any fixed n > 0, the functor (0.1) is the limit of a* : Loc®(pt)[—p,m] —
Loc®(I)[—p,m] over m = 0.

Thus let F € Loc®(I)[—p, ) and let us show that F is constant. Shifting, we may as well
assume that F € Loc®(I)[gy for some integer b > 0. We argue by induction on b, the
case b = 0 already known from the previous exercise. Let b > 0 and consider the exact
triangle

H(F)[b] ~ m20(F) = F — 751 (F).

Since the right-hand term lies in Loc®(I )[0,p—1]> the induction hypothesis yields that it
is constant. Since the left-hand term lies in Loc®(I)[o,0) up to shifting, the case b =0
implies that it is also constant. So it will suffice to show that any extension of constant
sheaves is constant.
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Lemma 4. Let X be a contractible topological space and suppose given an exact triangle
Ky -3 —Lx
in Shv(X), where K,L € D(R). Then JF is constant.

Proof. Rotating, we may write F as the cofibre of the boundary map ¢ : Ly[—1] — K y.
Using the fully faithfulness of a* : Shv(pt) — Shv(X), we may write

Mapsgpy(x)(Lx[—1], K x) =~ Mapsgp,(x)(a*(L[~1]), a*(K)) ~ Mapspg)(L[-1], K).

Thus the boundary map ¢ can be written as a*(0) for some 0 : L[—1] — K in D(R).
Setting M := Cofib(0 : L[—1] — K), this latter can be regarded as the boundary map
for the exact triangle

K—-M-— L.
By exactness of a*, we thus have My = a*(M) ~ F. O

(In fact, what this shows is that the full subcategory of Shv(X) spanned by constant
sheaves is a stable subcategory, when X is contractible.)

Sheet 8, no. 3.

(1) Let i : pt — A be the inclusion of the origin, where pt = Spec(C), and let
j: Gy — Al be the inclusion of the complement. Compute i*j.(R).

(2) Generalize the calculation to the case of a vector bundle E — X, withi: X — FE
the zero section and j : E < E the inclusion of the complement.

(3) Leti:pt — Al and j : Gy, = Al be as in (1). Let £ be a locally constant sheaf
on Gp,. Using the equivalence Loc®(C*; R) ~ Fun(Il,(C*),D(R)), identify £
with an object K € D(R) together with a monodromy automorphism T : K — K,
or equivalently an object K € D(R[T,T~']).

Show that i*j,(L) € Shv(pt; R) ~ D(R) is identified with the homotopy
invariants K7 (Equivalently, this is the mapping complex MR[T’T—I](R, IN(),
where R is regarded as an R[T, T~1]-module via the trivial augmentation T ~ 1.)

Solution. We explain the proof of (2). Let p: E — X be a vector bundle and consider
the diagram

X 3Bl F
\ lp /
q
X.
We begin by recalling the dual Euler transformation

K] _p eulg |
ip*i=%"F —5id,

which is dual to eulg : id — . Recall that this is defined as

. Ex*' . .
Z'p* =T Z*p* ~id
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using the exchange transformation Ex* : i' — i* coming from the pullback square

X =—X
|
X ' E.

Unravelling the definitions, this is given by the composite

! .| unit . coumt l.
Ex* :id*i' 5 idiidiid*s ~ id'i* iy’ id's*,

where the isomorphism is the base change formula for the pullback square above. In
other words, the dual Euler transformation can be expressed as

oo counlt . d

Pt~ iy pt S
In particular, it fits into the localization triangle

% eulE % unit

ipt —= i*p* —— i G > ¥ g™
We conclude that:

Lemma 5. Let p: E — X be a vector bundle over a scheme X € Schi. Then with
notation as above,

i*5xq*(—) ~ Cofib(eul); : 7% — id).
In particular, i*j.(R) ~ Cofib(euly, : R{(—E) — R) in Shv(X).

Using the inverse ¥ to ¥=F, we have the identification of mapping complexes
Hom(R(-E), R) ~ Hom(R, R(E)) ~ C*(X; R){(E),
under which euly, : R(—FE) — R is identified with the Euler class e(E). Via the Thom
isomorphism R(E) ~ R[2r], we may further identify
C*(X; R)(E) = C*(X; R)[2r],
where r = rk(FE), under which e(FE) corresponds to the top Chern class cor(E). Given
a null-homotopy e(F) ~ 0, we thus obtain

*jx(R) ~ Cofib(R[-2r] > R) ~ R[-2r + 1] ® R.

For example, recall that there is a canonical such null-homotopy whenever p: £ — X
admits a nowhere zero section s. This is in particular the case when E admits A} Y as a
direct summand, so in particular we have i*j.(R) ~ R ® R[—1] in the case of (1).

In general however, i*j,(R) is just an extension via the exact triangle

R — i*j,(R) = Rl—2r + 1]

which is non-split if co,(E) is nonzero. For example, let X = P and let E be the total
space of O(2). Then ¢;(E) € C*(Pg; R)[2] is nonzero, as can be seen e.g. by inspection
of the projective bundle formula.



