
CONSTRUCTIBLE SHEAVES AND VANISHING CYCLES

ADEEL A. KHAN

1. Introduction 1
2. Sheaves on spaces 2

2.1. Calculus of complexes 3
References 12

1. Introduction

In these lectures we will introduce the theories of constructible sheaves and
vanishing cycles. They can be summed up as a package consisting of the
following collection of structures:

Shv(X) sheaves X an algebraic variety over C

Shvc(X) constructible sheaves

(⊗,Hom) tensor and internal Hom

D Verdier duality

(f∗, f∗) ∗-pullback and ∗-pushforward f ∶X → Y a morphism

(f!, f !) !-pushforward and !-pullback

ψt, φt nearby and vanishing cycles t ∶X →A1 a regular function

For every complex algebraic variety X, we will introduce a category Shv(X)
as well as a full subcategory Shvc(X) of constructible objects. These will
be equipped with several different operations. For each X, we will have the
operations of tensor product and internal Hom, satisfying the adjunction
formula

Hom(F ⊗G,H) ≃ Hom(F,Hom(G,H)).
We will also have a duality functor D, satisfying D(D(F)) ≃ F for F

constructible. For a morphism of complex algebraic varieties f ∶X → Y , we
will have two different types of pullbacks and pushforwards, satisfying the
adjunction formulas

Hom(f∗(G),F) ≃ Hom(G, f∗(F))
Hom(f!(F),G) ≃ Hom(F, f !(G)).

Date: 2025-10-16.



2 ADEEL A. KHAN

Finally, for a regular function t on X, i.e., a morphism t ∶ X → A1 to the
complex affine line, we will have the functors of nearby and vanishing cycles,
ψt and φt respectively. All these various operations restrict to constructible
objects, and are woven together through various compatibilities. For example,
the ∗- and !-functors are interchanged by Verdier duality, and similarly

D(F ⊗G) ≃ Hom(F,D(G)).
This package is often referred to informally as the six functor formalism;
while the name refers to the six functors ⊗,Hom, f∗, f∗, f!, f !, the term is used
loosely and is often understood to also include the closely related functors D,
ψt, and φt.

Our first goal in these lectures will be to learn how this formalism is con-
structed, and how to effectively manipulate and work with it. We will then
illustrate how this abstract machinery forms an effective language for the
cohomological study of the geometry and topology of complex algebraic vari-
eties. For example, we will see how classical results such as the Gauss–Bonnet
and Lefschetz trace formulas find elegant expression (and proofs) in this
language. We will also see how the nearby and vanishing cycles functors are
used to analyze the topology of degenerating families of algebraic varieties.

2. Sheaves on spaces

Let X be a topological space and R a commutative ring. Our goal in this
section will be to develop the construction

Shv(X;R),
whose objects are R-linear “sheaves” on X. Later on, we will apply this to
the topological space underlying a complex algebraic variety1, but for now
our considerations will not make use of the algebraic structure on X.

For example, there will be a constant sheaf

RX ∈ Shv(X;R),
which ∗-pushes forward along the projection f ∶X → pt to a sheaf

f∗(RX) ∈ Shv(pt;R).
There will be an equivalence

Shv(pt;R) ∼Ð→D(R),
where objects of D(R) are represented by (co)chain complexes of R-modules.
The object f∗(RX) will correspond to an object

C●(X;R) ∈ D(R),
represented by the complex of singular cochains on X with coefficients in R.
In fact, objects of D(R) are at first approximation “(co)chain complexes of
R-modules up to quasi-isomorphism”; somewhat more precisely, D(R) is a
certain enhancement of the derived category of R.

1more precisely, to the topological space X(C) of complex points of a finite type
C-scheme X
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2.1. Calculus of complexes. Classical linear algebra provides a robust
calculus for vector spaces, or more generally R-modules, through operations
like kernels, cokernels, direct sums, and tensor products. A succinct way to
summarize this is provided by the language of category theory: the collection
of modules over a commutative ring R assembles into a symmetric monoidal
abelian category ModR.

Derived linear algebra is a similar calculus for chain complexes of R-modules.
While the collection of chain complexes of R-modules does similarly assemble
into a symmetric monoidal abelian category Ch(R), it turns out that this
“näıve” calculus is too rigid for our purposes. We need a homotopical version
of this calculus, where equalities are replaced by chain homotopies.

To justify our claim that the näıve calculus is too rigid, let us consider
the following example. Suppose X is a topological space and C●(X) is the
complex of singular chains on X, regarded as an object of Ch(R). Given any
continuous map f ∶X → Y , there is an induced morphism of chain complexes
f∗ ∶ C●(X) → C●(Y ). This construction is functorial, so if we are given an
open cover X = U ∪ V , there is an induced commutative square

C●(U ∩ V ) C●(V )

C●(U) C●(X)

iU∩VV,∗

iU∩VU,∗ iVX,∗

iUX,∗

(2.1.1)

in Ch(R). However, we have:

Exercise 2.1.2. The square (2.1.1) is not a pushout in Ch(R). Equivalently,
the sequence

0→ C●(U ∩ V )

⎡⎢⎢⎢⎢⎢⎣

iU∩VU,∗
iU∩VV,∗

⎤⎥⎥⎥⎥⎥⎦ÐÐÐÐ→ C●(U) ⊕C●(V )
iUX,∗−iVX,∗ÐÐÐÐÐ→ C●(X) → 0

is not exact in Ch(R).

Informally speaking, singular chains are not local. Nevertheless, we do have
the following result (a reformulation of the Mayer–Vietoris theorem):

Theorem 2.1.3. The square (2.1.1) is a homotopy pushout. Equivalently,
the diagram

C●(U ∩ V )

⎡⎢⎢⎢⎢⎢⎣

iU∩VU,∗
iU∩VV,∗

⎤⎥⎥⎥⎥⎥⎦ÐÐÐÐ→ C●(U) ⊕C●(V )
iUX,∗−iVX,∗ÐÐÐÐÐ→ C●(X)

determines an exact triangle.

As we will see, the notion of exact triangle is an “up to coherent homotopy”
analogue of the notion of exact sequence. The meaning of this statement is
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that (2.1.1) is universal among all squares of the form

C●(U ∩ V ) C●(V )

C●(U) K●

iU∩VV,∗

iU∩VU,∗ φV

φU

that commute up to coherent homotopy : more precisely, among all tuples
(K●, φU , φV ,H) where H is a specified chain homotopy φU ○iU∩VU,∗ ≃ φV ○iU∩VV,∗ ,

i.e., a degree one map H ∶ C●(U ∩ V ) →K●+1 satisfying

φU ○ iU∩VU,∗ − φV ○ iU∩VV,∗ = d ○H +H ○ d.

We say that this homotopy H witnesses the commutativity of the above
square.

The moral of this discussion is that for our purposes, the category Ch(R)
should be replaced by some more elaborate homotopical structure, which
encodes, instead of diagrams that commute up to equality, diagrams that
commute up to coherent homotopy. This will have the effect that limits and
colimits are replaced by homotopy limits and colimits. This is precisely what
is achieved by the construction we have denoted by D(R), which assembles
chain complexes of R-modules into a symmetric monoidal stable ∞-category.
In particular, (2.1.1) will indeed be a pushout square in the ∞-category
D(R).

2.1.1. The ∞-category of complexes. Before introducing the ∞-category
D(R), we recall its classical approximation, the derived category of chain
complexes of R-modules.

Reminder 2.1.4. Denote by hD(R) the localization of the category Ch(R)
with respect to quasi-isomorphisms.2 This is a category equipped with a
functor γ ∶ Ch(R) → hD(R) which sends all quasi-isomorphisms in Ch(R) to
isomorphisms in hD(R), and is initial among all functors with this property.
It admits various more explicit models, one of which is the following:

● Objects are K-injective complexes of R-modules.
● Morphisms M● → N● are morphisms in Ch(R), modulo the relation

of chain homotopy.

Here, an object M● ∈ Ch(R) is called K-injective (following Spaltenstein) if
for every N● ∈ Ch(R), every subcomplex N ′● ⊆ N● which is quasi-isomorphic to

N●, and every morphism f ∶ N ′● →M●, there exists a morphism f ∶ N● →M●
extending f . This is an analogue for chain complexes of the notion of injective
R-module.

2Classically, this category is denoted by D(R). In these notes this notation is instead
used for the ∞-categorical derived category. Since the classical derived category can be
realized as the homotopy category of the ∞-categorical one, we use the notation hD(R) for
the former.
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Our goal is to construct a factorization of γ through an intermediate structure,

Ch(R) →D(R) → hD(R).

Informally speaking:

● Ch(R) is a structure encoding diagrams of chain complexes that
commute up to equality.

● hD(R) is a structure encoding diagrams of chain complexes that
commute up to homotopy.

● The intermediate construction D(R) should be a structure encoding
diagrams of chain complexes that commute up to coherent homotopy.

In order to encode homotopy coherent diagrams of chain complexes, we must
pass from ordinary categories to a richer kind of structure.

Construction 2.1.5. Consider the following collection of sets:

● Let S0 denote the set of chain complexes of R-modules.
● Let S1 denote the set of tuples (M●,N●, φ) where M● and N● are
K-injective complexes and φ ∶ M● → N● is a morphism of chain
complexes.

● Let S2 denote the set of tuples (M●,N●, P●, f01, f12, f02,H) where M●,
N●, and P● are K-injective complexes, f01, f12, f02 are morphisms of
chain complexes, and H is a chain homotopy f02 ≃ f12 ○ f01.

● ⋯
● For any n ⩾ 0, we define Sn as follows. Informally, its elements are
K-injective complexes (M0)●, (M1)●, . . . , (Mn)●, along with the mor-
phisms fij ∶ (Mi)● → (Mj)● which are compatible up to coherent ho-
motopy. More precisely, the coherence means that we need to exhibit
specific homotopies witnessing this compatibility. Thus, an element
of Sn consists of K-injective complexes (M0)●, (M1)●, . . . , (Mn)●, to-
gether with a collection of maps3

fI ∶ (Mi−)k → (Mi+)k+m,

indexed by subsets I = {i− < i1 < ⋯ < im < i+} of {0,1, . . . , n},
satisfying the relation

d(fI(x)) = (−1)mfI(dx) + ∑
1⩽j⩽m

(−1)j(fI∖{ij}(x) − (fij ,...,i+ ○ fi−,...,ij)(x))

for every x ∈ (Mi−)k.

There are also various natural maps between these Sn’s.

● For every order-preserving map α ∶ [m] → [n], where [n] is the
set {0,1, . . . , n} with its usual order, we have a map α∗ ∶ Sn → Sm.
Given (Mj)●, 0 ⩽ j ⩽ n, and the maps {fI}I , α∗ sends this to the

3not necessarily a morphism of chain complexes, i.e., not required to commute with the
differentials
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complexes (Mα(j))●, 0 ⩽ j ⩽ n, together with the collection of maps
{gJ}J defined as follows:

gJ(x) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

fα(J) if α∣J is injective,

x if J = {j, j′} and α(j) = α(j′),
0 otherwise.

This kind of structure has a name.

Definition 2.1.6. A simplicial set S● is a collection of sets Sn, n ⩾ 0, and a
collection of maps α∗ ∶ Sn → Sm for every order-preserving map α ∶ [m] → [n].
These maps α∗ are required to be compatible with composition. The elements
of Sn are called the n-simplices of S●.

Example 2.1.7. If C is a category, there is a simplicial set N(C)● called
the nerve of C, whose n-simplices are chains of composable arrows

C0 → C1 → ⋯→ Cn

in C. This simplicial set N(C)● remembers everything there is to know
about the category C: its objects, its morphisms, and the composition law.
More precisely, the construction C ↦ N(C)● determines a fully faithful
functor from the category of categories to the category of simplicial sets.

Construction 2.1.8. The homotopy theory of topological spaces yields a
variant of Construction 2.1.5, where the 0-simplices are topological spaces,
the 1-simplices are continuous maps, and chain homotopies are replaced by
usual homotopies for the higher simplices.

These examples suggest that it is possible to regard simplicial sets as category-
like structures, with objects given by the 0-simplices, morphisms given by the
1-simplices, and the higher simplices encoding higher coherent homotopies.
Taking this approach leads to one rigourous definition of the notion of
∞-category, as developed in [Lur3] or [Ci].

In these notes, we will instead take a more informal approach that suffices for
the “working mathematician”. The simplicial sets of Constructions 2.1.5 and
2.1.8 should determine ∞-categories D(R) and H, respectively.4 Objects
of H are homotopy types of topological spaces, and H is an ∞-categorical
enhancement of the homotopy category of topological spaces in the same
way that D(R) enhances the derived category of chain complexes.

Definition 2.1.9. An ∞-category C is a collection of objects X ∈ C, together
with mapping types

MapsC(X,Y ) ∈ H, for every X,Y ∈ C,
and a composition law

MapsC(X,Y ) ×MapsC(Y,Z) →MapsC(X,Z), for every X,Y,Z ∈ C,
which is unital and associative up to coherent homotopy.

4In Construction 2.1.5, one could equivalently use K-projective rather than K-injective
complexes. That is, the two resulting simplicial sets would define the same ∞-category, up
to equivalence of ∞-categories.
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Similarly, an R-linear ∞-category C is a collection of objects together with
mapping complexes MapsC(X,Y ) ∈ D(R), and a composition law which is
unital and associative up to coherent homotopy.

By convention, we will adopt the following terminology:

Definition 2.1.10. A homotopy type, or simply a type for short, is an object
of H.5 A complex (of R-modules) is an object of D(R).

By definition, every complex K ∈ D(R) can be represented by a chain
complex K● ∈ Ch(R), and similarly every type can be represented by some
topological space.

Definition 2.1.11. Given a complex K ∈ D(R), the underlying type of K
is the mapping type

K○ ∶= MapsD(R)(R,K) ∈ H.

We will also sometimes simply write K for K○ when there is no risk of
confusion. A point of K is a point of K○, i.e., a morphism R →K in D(R).

Since mapping types are covariantly functorial in the target, the assignment
K ↦K○ determines a canonical functor of ∞-categories

D(R) →H.

Remark 2.1.12. By analogy, note that ifM is anR-module, then HomR(R,M)
is its underlying set (with the R-module structure forgotten).

2.1.2. Homotopy coherent diagrams and co/limits. The ∞-category D(R),
resp. H, is designed to encode homotopy coherent diagrams, i.e., diagrams
of chain complexes (resp. topological spaces) that commute up to coherent
homotopy.

Definition 2.1.13. Let I be an ∞-category (e.g., an ordinary category
regarded as an ∞-category). Let C be an ∞-category. An I-shaped diagram
in C is a functor of ∞-categories F ∶I → C.

Example 2.1.14. Let I = ∆2 be the category with objects 0, 1, and 2,
and exactly three nontrivial morphisms 0 → 1, 1 → 2, and 0 → 2, with
[0→ 2] = [1→ 2] ○ [0→ 1]. A ∆2-shaped diagram in D(R) amounts to the
data of:

● three complexes M0, M1, M2;
● three morphisms f01 ∶M0 →M1, f12 ∶M1 →M2, and f02 ∶M0 →M2;
● a homotopy f02 ≃ f12 ○ f01.

5An important theorem in ∞-category theory is that H is equivalent to the ∞-category
of ∞-groupoids, i.e., ∞-categories where all morphisms are invertible. We will therefore
sometimes use the terminologies types and ∞-groupoids interchangeably. Note that ho-
motopy theorists use the terminology spaces (this doesn’t suit our purposes, as we are
interested in invariants like the ∞-category of sheaves on a space, which does not depend
on just the homotopy type.) Also, some communities also use the terminology anima or
animae.
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Thus, when we say that the diagram

M0 M1

M2

f01

f02
f12

commutes up to coherent homotopy, we mean that it is specified by a functor
∆2 →D(R).

Definition 2.1.15. Let C be an ∞-category. A commutative triangle in C

is a ∆2-shaped diagram.

Remark 2.1.16. We will take the assertion of Example 2.1.14 for granted,
but it can be justified using the simplicial set model for D(R) as follows. For
each n, the standard n-simplex is the simplicial set ∆n whose k-simplices
are order-preserving maps [k] → [n]. The simplicial set ∆2 is nothing but
the nerve of the category denoted ∆2 in Example 2.1.14. It is convenient
to express this using the language of presheaves. Denote by ∆ the cate-
gory whose objects are finite sets [n] ∶= {0,1, . . . , n} for n ⩾ 0, and whose
morphisms [m] → [n] are order-preserving maps. Then a simplicial set is
nothing but a presheaf on ∆, i.e., a functor from ∆op to the category of sets,
and ∆n = Hom∆(−, [n]) is the presheaf represented by [n]. Now the Yoneda
lemma says that morphisms of simplicial sets ∆2 → S● are in bijection with
2-simplices of S●. Applying this to the simplicial set of Construction 2.1.5,
we see in particular that a ∆2-shaped diagram in D(R), which is encoded
by a morphism of simplicial sets ∆2 → S●, is the same thing as an element of
S2.

We can similarly describe diagrams of more general shapes, because a general
category I can be built out of the standard n-simplexes ∆n.

Example 2.1.17. Let I = ◻ denote the category with four objects 00, 10,
01, and 11, with morphisms as depicted:

00 10

01 11,

such that [10 → 11] ○ [01 → 10] = [00 → 11] = [01 → 11] ○ [00 → 01]. A
◻-shaped diagram in D(R) amounts to the data of a diagram

M00 M10

M01 M11

f0

g0
h g1

f1

that commutes up to homotopies g1 ○ f0 ≃ h ≃ f1 ○ g0.

Definition 2.1.18. Let C be an ∞-category. A commutative square in C is
a ◻-shaped diagram.
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Remark 2.1.19. Example 2.1.17 can be justified using the simplicial model
for D(R) as follows. Let ∆1 denote the category with two objects 0, 1, and
a unique nontrivial morphism 0 → 1 (note that its nerve is the standard
1-simplex ∆1 from Remark 2.1.16). The category ◻ is equivalent to ∆1 ×∆1,
so in particular its nerve is the simplicial set ∆1 ×∆1. In the category of
simplicial sets, there is a pushout square

∆1 ∆2

∆1 ∆1 ×∆1

which one may visualize as the subdivision

00 10

01 11

of ◻ ≃ ∆1 × ∆1 into two ∆2’s glued along the diagonal ∆1. Thus, by
Remark 2.1.16, a ◻-shaped diagram in D(R) can be understood as two
homotopies identifying g1 ○ f0 and f1 ○ g0 separately with the diagonal arrow
h.

Definition 2.1.20. Let I be the category depicted as follows:

10

01 11.

Let X ∶I → C be an I-shaped diagram in an ∞-category C, depicted as:

X10

X01 X11.

Given an object Y ∈ C, consider the type

MapsFun(I,C)(Ycst,X) ∈ H,

where Ycst is the constant diagram Y → Y ← Y . The pullback of the diagram
X01 →X11 ←X10 is an object P ∈ C equipped with a natural transformation
α ∶ Pcst →X, such that

MapsC(Y,P ) →MapsFun(I,C)(Ycst,X),

given by

(f ∶ Y → P ) ↦ (Ycst
fcstÐÐ→ Pcst

αÐ→X),

is an isomorphism in H for all objects Y ∈ C.
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Unravelling, note that a point of Maps(Ycst,X) amounts to two maps Y →
X01, Y →X10, and a commutative square

Y X10

X01 X11

(2.1.21)

in C. The pullback is thus an object P fitting into such a commutative
square, such that for any other such square (2.1.21), there exists a map
Y → P , unique up to a contractible space of choices, making the following
diagram commute (up to coherent homotopy):

Y

P X10

X01 X11.

Notation 2.1.22. Given a commutative diagram X01 → X11 ← X10 in
C, we will denote by X01 ×X11 X10 ∈ C the pullback (when it exists). The
∞-categorical Yoneda lemma implies that, if the pullback does exist, it is
unique up to a contractible space of choices.

More generally, we define:

Definition 2.1.23. Let X ∶I → C be a diagram in an ∞-category C. The
limit of X is an object P equipped with a natural transformation α ∶ Pcst →X
such that the map

MapsC(Y,P ) →MapsFun(I,C)(Ycst,X),
given by

(f ∶ Y → P ) ↦ (Ycst
fcstÐÐ→ Pcst

αÐ→X),
is invertible in H.

Notation 2.1.24. Given a diagram X ∶ I → C, written informally as
{Xi}i∈I, the limit of X is denoted by

lim←ÐX or lim←Ð
i∈I

Xi.

When it exists, it is unique up to a contractible space of choices.

Remark 2.1.25. Note that limits in D(R) correspond to homotopy limits
of chain complexes, as opposed to actual limits in Ch(R).
Definition 2.1.26. Dually, given a diagram X ∶ I → C, the colimit is
defined dually and denoted by

limÐ→X or limÐ→
i∈I

Xi.

In other words, limÐ→X is the limit of Xop ∶Iop → Cop. For example, we have

a notion of pushouts of diagrams X01 ←X00 →X10, dual to pullbacks.
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2.1.3. Co/fibres and exact triangles of complexes. We now return to the ∞-
category D(R) and aim to understand some examples of limits and colimits
more concretely in this setting.

Example 2.1.27. Let φ ∶K → L be a morphism of complexes in D(R). The
fibre of φ, denoted Fib(φ), is defined as the pullback

Fib(φ) K

0 L.

φ

Let Y ∈ D(R) be a complex. A morphism Y → Fib(φ) is by definition a
commutative square

Y K

0 L

ψ

φ

in D(R), i.e., a morphism ψ ∶ Y → K together with a null-homotopy H ∶
φ○ψ ≃ 0. If K, L, and Y are presented by termwise projective chain complexes
K●, L●, and Y●, H can be presented by a graded map H● ∶ Y● → L●+1 satisfying
φ ○ψ = d ○H +H ○ d. Let us attempt to build a chain complex F● presenting
Fib(φ). If a map Y● → F● is to encode ψ and H, it seems reasonable to set
Fn ∶=Kn ⊕Ln+1 for every n ∈ Z. It’s not difficult to write down differentials
dF ∶ Fn → Fn−1 with the property that d2 = 0, ψ is a chain map, and H is a
chain homotopy; for example, we may take

dF (a, b) ∶= (dK(a), φ(a) − dL(b)).
Then it is not difficult to show that the chain complex F● ∈ Ch(R) indeed
represents the fibre Fib(φ) ∈ D(R). Note moreover that F● is precisely the
shifted mapping cone Cone(φ)[−1].6

Example 2.1.28. Dually, we define the cofibre of φ ∶K → L as the complex
Cofib(φ) ∈ D(R) fitting in the pushout square

K L

0 Cofib(φ).

φ

By similar reasoning, one may represent Cofib(φ) by the chain complex Q●
given by Qn ∶= Ln ⊕Kn−1 and differentials

dQ(a, b) = (dL(a) + φ(b),−dK(b)).
Note that Q● is precisely the mapping cone Cone(φ).7

Corollary 2.1.29. For any morphism φ ∶K → L in the ∞-category D(R),
there is a canonical isomorphism Fib(φ) ≃ Cofib(φ)[−1].

6up to the usual choice of sign conventions in the definition of Cone(φ), which agree up
to quasi-isomorphism

7again, up to sign conventions
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Definition 2.1.30. An exact triangle in D(R) is a diagram

K
φÐ→ L

ψÐ→M

together with a null-homotopy ψ ○ φ ≃ 0, such that either of the following
equivalent conditions hold:

(a) The induced map Cofib(φ) →M is an isomorphism in D(R).

(b) The induced map K → Fib(ψ) is an isomorphism in D(R).
Example 2.1.31. For any complex K ∈ D(R), we have exact triangles

K[−1] → 0→K, K → 0→K[1]
in D(R).
Proposition 2.1.32. Given a diagram

K01
φÐ→K11

ψ←ÐK10,

the pullback P is canonically isomorphic to

Fib(φ − ψ ∶K01 ⊕K10 →K11).
Exercise 2.1.33. State and prove a dual version of Proposition 2.1.32,
computing pushouts as cofibres.

Proposition 2.1.34. Given a commutative square

K00 K10

K01 K11

in D(R), it is a pullback square if and only if it is a pushout square.

Proof. Combine Corollary 2.1.29, Proposition 2.1.32, and Exercise 2.1.33. �

Definition 2.1.35. A commutative square in D(R) is exact if it is a pullback,
or equivalently if it is a pushout.

References

[Ci] D.-C. Cisinski, Higher categories and homotopical algebra. Cambridge Studies in
Advances Mathematics 180 (2019).

[Lur1] J. Lurie, Higher Topos Theory. Ann. Math. Stud. 170 (2009).
[Lur2] J. Lurie, Higher Algebra, version of 2017-09-18. Available at: https://www.math.

ias.edu/~lurie/papers/HA.pdf.
[Lur3] J. Lurie, Kerodon, https://kerodon.net.

Institute of Mathematics, Academia Sinica, Taipei 10617, Taiwan

https://www.math.ias.edu/~lurie/papers/HA.pdf
https://www.math.ias.edu/~lurie/papers/HA.pdf
https://kerodon.net

	1. Introduction
	2. Sheaves on spaces
	2.1. Calculus of complexes

	References

