Exercise sheet 3

1. Let **C** be a stable ∞ -category. Show that **C** is additive, i.e., that the canonical morphisms $x \sqcup y \to x \times y$ are invertible for all objects $x, y \in \mathbf{C}$.

2. Let R be a simplicial commutative ring. Show that the assignment $M \mapsto \pi_0(M)$, viewed as a functor $Mod_R \to (Mod_{\pi_0(R)})^{\heartsuit}$, induces an equivalence

 $(\mathrm{Mod}_{\mathrm{R}})^{\heartsuit} \simeq (\mathrm{Mod}_{\pi_0 \mathrm{R}})^{\heartsuit}.$

3. Let R be a simplicial commutative ring and $M \in Mod_R$. Show that M is finitely generated projective iff it is locally free of finite rank; that is, if there exists a Zariski covering $(R \to R_{\alpha})_{\alpha}$ such that each $M \otimes_R R_{\alpha}$ is isomorphic to $R^{\oplus n_{\alpha}}$ for some n_{α} .

3. Let R be a simplicial commutative ring and $M \in Mod_R$. Suppose that M is flat. Then show that the following conditions are equivalent:

(i) M is *projective* in the sense that for any map of connective R-modules $N_1 \rightarrow N_2$ that is surjective on π_0 , any map $M \rightarrow N_2$ lifts to N_1 (up to homotopy).

(ii) $\pi_0(M)$ is projective as a $\pi_0(R)$ -module.

4. Let R be a simplicial commutative ring.

(a) Show that the condition "of finite tor-amplitude" is stable under finite colimits and direct summands in Mod_R .

(b) Deduce that any perfect R-module is of finite tor-amplitude.

5. Show that for any R-module M, we have functorial isomorphisms

$$\begin{split} \mathbf{M} &\xrightarrow{\sim} \varprojlim_n \tau_{\leqslant n}(\mathbf{M}), \\ & \varinjlim_n \tau_{\geqslant n}(\mathbf{M}) \xrightarrow{\sim} \mathbf{M}. \end{split}$$

6. Show that the subcategory $(Mod_R)_{\geq 0}$ is generated under colimits by the object R.

7. Let R be an ordinary commutative ring. Show that a discrete R-module $M \in (Mod_R)^{\heartsuit}$ is compact iff it is of finite presentation.

8. Let R be a simplicial commutative ring. Suppose that $\pi_0(R)$ is noetherian and $\pi_i(R)$ are finitely generated $\pi_0(R)$ -modules. Say that an R-module M is *coherent* if its homotopy groups $\pi_i(M)$ are bounded above and below, and are all finitely generated $\pi_0(R)$ -modules.

(a) Show that the coherent R-modules generate a *thick* subcategory $Mod_{R}^{coh} \subset Mod_{R}$, i.e., they are closed under finite (co)limits and direct summands.

(b) Show that there is an inclusion $Mod_R^{perf} \subset Mod_R^{coh}$ iff R has only finitely many homotopy groups.

(c) Suppose that $\pi_0(\mathbf{R})$ is regular. Then show that there is an inclusion $\operatorname{Mod}_{\mathbf{R}}^{\operatorname{coh}} \subset \operatorname{Mod}_{\mathbf{R}}^{\operatorname{perf}}$ iff $\pi_0(\mathbf{R})$ is perfect as an R-module.