Exercise sheet 4

1. GEOMETRIC REALIZATION

1.1. Let Top denote the category of compactly generated Hausdorff spaces, and let r : A — Top
denote the functor sending [n] to the topological n-simplex Affop. By the universal property of
presheaves, this extends uniquely to a functor

(1.1) |—| :=r : Seta — Top
with the following properties:
(i) It commutes with colimits.
(ii) It sends A™ — [A"| = AR, .
(iii) It is left adjoint to the restriction functor
Sing := r* : Top — Seta.

For a simplicial set X, we call the space |X| the geometric realization of X. It is computed by

the formula
X| = lim A%,
A" X

For a topological space T, we call the simplicial set Sing(T) the singular complex of T. By
definition, the n-simplices of Sing(T) are topological n-simplices of T:

Sing(T),, = HomTOp(Alfop, T).
1.2. Our first goal is to show that the functor X — |X| factors through the category of
CW-complexes:
Proposition 1.2.1. For any simplicial set X, the geometric realization |X| is a CW-complex.

To prove this, recall that X can be written as a filtered colimit of its n-skeleta Sk™(X), where
each n-skeleton can be built inductively as the push-out:

H aAn ¢ H An
Sk™H(X) —— Sk™(X),
where the coproducts are indexed over the set of non-degenerate n-simplices .

We would like to define a CW-structure on |X| with n-skeleta |X|" := |Sk"(X)|. Since X > |X]
commutes with colimits, we only need to check:

Exercise 1.2.2. For each n > 0 there are canonical homeomorphisms
|OA"| &~ 0AT,,,

where OAL  denotes the boundary of the topological n-simplex.

Top

Hint: express OA™ as a coequalizer of a diagram involving only terms of the form A*.

Remark 1.2.3. Another proof uses the fact that X — |X]| is left-ezact, i.e. commutes with finite
limits. This is rather involved to prove (see Gabriel-Zisman, II1.3), but it implies in particular
that X — |X| commutes with the operation of taking the image of a morphism.

Similarly:



Exercise 1.2.4. For each n > 0 and 0 < k < n, there are canonical homeomorphisms
|AL| =~ (AR)Top,

where (A})1op denotes the topological (n,k)-horn. Further, these are compatible with the
inclusions A} — A" in the sense that there are commulative squares

AR —= (A Top

| |

A" —=— Al

2. HOMOTOPY THEORY OF TOPOLOGICAL SPACES (I)

2.1. Given topological spaces X,Y € Top, we say that a continuous map f : X — Y is a Serre
fibration if it has the right lifting property with respect to the set of topological horn inclusions

(AZ)TOP — A7'Il‘op (n = 07 0 < k < n)

Remark 2.1.1. Note that A%, is homeomorphic to the n-cube, and under this homeomorphism,
the (n, k)-horn is identified with the inclusion of the union of the ith faces (i # k). Thus f is
a Serre fibration iff it has the right lifting property with respect to the inclusions I" =1 — I?

(where I denotes the interval [0, 1]).

Exercise 2.1.2. A map f: X = Y is a Serre fibration iff the induced morphism Sing(X) —
Sing(Y) is a Kan fibration of simplicial sets.

2.2.  We say that a continuous map f : X — Y is a weak homotopy equivalence if the the
induced maps
fe:mo(X) = mo(Y)
and
f* : 7Ti(X’ .13) - 7Ti(Y7 f(x))
are bijective for all 7 > 0 and all points = € X.

Exercise 2.2.1. A map f: X =Y is a weak homotopy equivalence iff the induced morphism
Sing(X) — Sing(Y) 4s a weak homotopy equivalence of simplicial sets.

Hint: recall that a weak homotopy equivalence of simplicial sets is defined analogously to the
above, so it suffices to show that there are functorial bijections m;(X, z) ~ m;(Sing(X), ) for all
z e X.

Exercise 2.2.2. Let f : X = Y be a Serre fibration. Then f is a weak homotopy equivalence if
and only if it has the right lifting property with respect to the inclusions OAL,  — A%, for all
n > 0.
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