
Lecture 1
Derived algebraic geometry

1. Simplicial commutative rings. We begin with a brief review of the theory of simplicial
commutative rings. Our aim will be to derive the theory of simplicial commutative rings by
taking higher algebra as a starting point.

The ∞-category of simplicial commutative rings can be presented by a model structure on
the category of simplicial objects in the category of ordinary commutative rings. In this lecture
we take a different approach, based on the idea that a simplicial commutative ring is “a space
equipped with a commutative ring structure”; here, as always in these lectures, we use the
term space agnostically to mean “an object of the ∞-category of spaces” (as opposed to any
particular presentation of the latter, e.g. by CW or Kan complexes).

There is some subtlety in the phrase “commutative ring structure”. Recall that a commutative
ring structure on a set is a structure of abelian group and a compatible structure of commutative
monoid. For spaces, a natural analogue would be an E∞-group space with a compatible
E∞-monoid structure, or equivalently, a connective E∞-ring spectrum; the term E∞ refers to
commutativity up to a homotopy coherent system of compatibilities. There is a theory of derived
algebraic geometry based on connective E∞-ring spectra, but it is not what we will be using
here.

The theory of simplicial commutative rings is instead obtained by imposing a stricter notion
of commutativity; the resulting theory is much closer to classical commutative algebra. Though
simplicial commutative rings are more classical and arguably more elementary than E∞-ring
spectra, we insist on viewing the latter as more fundamental since they form part of the basic
language of higher algebra.

1.1. Let us begin by recalling a description of the category CRing of ordinary commutative
rings in the style of Lawvere’s thesis.

Any commutative ring R represents a presheaf R̃ on CRing, and by restriction a presheaf on
the full subcategory Poly spanned by the polynomial rings Z[T1, . . . ,Tn] for n > 0.

Exercise 1.2.

(i) The presheaf R̃ sends finite coproducts in Poly to products of sets.

(ii) The assignment R 7→ R̃ defines an equivalence between CRing and the category of presheaves
of sets on Poly which send finite coproducts to products.

More generally, we can replace the category of sets by any category C which admits finite
products, to obtain a description of the category of “commutative ring objects in C” (with
respect to the cartesian product).

Replacing the category of sets with the ∞-category of spaces, we arrive at the following
definition:

Definition 1.3. A simplicial commutative ring is a presheaf

(Poly)op → Spc,

valued in the ∞-category of spaces, which sends finite coproducts in Poly to products of spaces.

Let SCRing denote the ∞-category of simplicial commutative rings; this is the “non-abelian
derived category” of Poly in the sense of Lurie, and by the general theory it is freely generated
by Poly under sifted homotopy colimits.
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Proposition 1.4. Let C be an ∞-category which admits sifted colimits. Then the Yoneda
embedding Poly ↪→ SCRing induces an equivalence of ∞-categories

(1.1) Functsift(SCRing,C)→ Funct(Poly,C),

where the decoration sift denotes the full subcategory spanned by functors that commute with
sifted colimits.

1.5. A simplicial commutative ring R amounts to the data of an “underlying space”

RSpc := R(Z[T]) ∈ Spc

together with further structure which is encoded by the category Poly. For example, for each
n > 1 we have a canonical map of spaces

mult : (RSpc)×n
∼←− R(Z[T1, . . . ,Tn])→ R(Z[T]) = RSpc

induced by the homomorphism Z[T]→ Z[T1, . . . ,Tn] which sends T 7→ T1 · · ·Tn. Similarly we
have canonical maps

add : (RSpc)×n → RSpc

determined by T 7→ T1 + · · ·+ Tn. There are two points of the space RSpc, i.e. canonical maps

(1.2) 0 : pt→ RSpc, 1 : pt→ RSpc

induced by the two homomorphisms Z[T]→ Z given by T 7→ 0 and T 7→ 1, respectively.

Exercise 1.6. Show that the homotopy groups π∗(RSpc) admit a canonical graded commutative
ring structure.

1.7. We say that a simplicial commutative ring R is discrete if it is discrete as a presheaf, i.e.
it takes values in sets. By Exercise 1.2, the full subcategory of discrete simplicial commutative
rings is equivalent to CRing; we will take “discrete simplicial commutative ring” to be our
definition of “ordinary commutative ring” from now on.

In particular, there is a 0-truncation functor SCRing→ CRing, left adjoint to the inclusion
of discrete simplicial commutative rings, which we will denote by R 7→ π0(R).

1.8. For a simplicial commutative ring R, we write SCRingR for the ∞-category of R-algebras,
i.e. simplicial commutative rings A equipped with a homomorphism R→ A.

The∞-category SCRingR admits finite coproducts, so it can be endowed with the cocartesian
monoidal structure; we denote the monoidal product by ⊗R, so that A⊗R B := AtR B.

We write R[T1, . . . ,Tn] := R⊗Z Z[T1, . . . ,Tn] for the polynomial R-algebras. One can show
that SCRingR is freely generated under sifted colimits by the full subcategory PolyR spanned
by R[T1, . . . ,Tn] for n > 0.

1.9. Let E∞-algcn denote the∞-category of connective E∞-ring spectra; this the full subcategory
of E∞-monoids R in the ∞-category of spectra with the property that πi(R) = 0 for i < 0.

There is a canonical fully faithful functor

(1.3) CRing→ E∞-algcn

which sends a commutative ring R to its Eilenberg–MacLane spectrum, and identifies ordinary
commutative rings with discrete E∞-ring spectra.

By Proposition 1.4 this functor extends in an essentially unique manner to a functor of
∞-categories

(1.4) SCRing→ E∞-algcn
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which commutes with sifted colimits; we will denote it by R 7→ RSpt. It is easy to see that
its infinite loop space Ω∞(RSpt) coincides with the underlying space RSpc we already defined.
Concretely speaking, RSpt is computed by taking a free simplicial resolution of R, applying
the Eilenberg–MacLane functor degreewise, and then taking the geometric realization of the
resulting simplicial spectrum.

1.10. For any simplicial commutative ring R, there is an induced functor

(1.5) SCRingR → E∞-algcn
RSpt

.

In general, this functor is neither fully faithful nor essentially surjective. Indeed the strictness
of commutativity and associativity in the operations on polynomial rings makes the theory of
simplicial commutative rings “stricter” than that of connective E∞-ring spectra. More precisely,
every simplicial commutative ring can be strictified in the sense that we have the following
description of SCRing (which we will not actually use):

Proposition 1.11. The ∞-category SCRing is canonically equivalent to the ∞-categorical
localization of the ordinary category of simplicial commutative rings at the class of weak homotopy
equivalences.

If R is a Q-algebra, then every E∞-R-algebra can similarly be strictified, and therefore the
functor (1.5) is actually an equivalence in this case.

1.12. For a simplicial commutative ring R, we define:

Definition 1.13. An R-module is a module over the E∞-ring spectrum RSpt.

We let ModR denote the stable symmetric monoidal ∞-category of R-modules, and Modcn
R

the full subcategory spanned by connective R-modules.

Note that if R is discrete, ModR is canonically equivalent to the derived category of the
abelian category of ordinary R-modules.

Remark 1.14. A more classical way to define ModR, using the presentation of Proposition 1.11,
is as follows. Given a simplicial object in CRing, there is an associated normalized cochain
complex which can be viewed as a dg-algebra with a (strictly) commutative multiplicative
structure via the shuffle product; the localization of the ∞-category of dg-modules (with respect
to quasi-isomorphisms) is then equivalent to ModR as we defined it above.

Any R-algebra has an underlying connective R-module, given by the forgetful functor

(1.6) SCRingR → E∞-algcn
RSpt
→ Modcn

RSpt
= Modcn

R .

Proposition 1.15. The functor (1.6) is conservative, commutes with limits, and admits a left
adjoint.

Let M 7→ SymR(M) denote the left adjoint, so that for any connective R-module M, SymR(M)
denotes the free R-algebra generated by M; we have canonical functorial isomorphisms

MapsSCRingR
(SymR(M),A) = MapsModcn

R
(M,A)

for any R-algebra A. For example, we have SymR(R⊕n) ≈ R[T1, . . . ,Tn] for n > 0.
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2. Derived schemes. Any scheme S represents a presheaf

X 7→ Maps(X,S)

on the category of schemes, which satisfies fpqc descent by a theorem of Grothendieck. The fact
that every scheme admits an affine Zariski cover implies that the inclusion of affine schemes
into arbitary schemes induces an equivalence at the level of Zariski or fpqc sheaves. Therefore
there is a fully faithful embedding of the category of schemes into the category of sheaves on
the affine fpqc site. On the other hand, if we identify its essential image, we can take this as our
definition of scheme. This is the philosophy we will take in our definition of derived scheme.

2.1. The fpqc pretopology on (SCRing)op is defined as follows.

Definition 2.2. A family of homomorphisms (R→ Rα)α∈Λ is fpqc covering if the following
conditions hold:

(i) The set Λ is finite.

(ii) For each α ∈ Λ, the homomorphism R→ Rα is flat (i.e. the underlying R-module of Rα is
flat).

(iii) The induced homomorphism R→
∏
α Rα is faithfully flat.

Recall that a connective R-module M is flat if for any discrete R-module N, the tensor product
R ⊗M N is discrete. It is faithfully flat if it is flat, and a connective R-module N is zero iff
M⊗R N is zero.

Definition 2.3.

(i) A derived prestack is a presheaf of spaces on (SCRing)op.

(ii) A derived stack is an fpqc sheaf of spaces on (SCRing)op, i.e. a derived prestack which
satisfies fpqc descent.

Let us recall the descent condition in this setting. Let (R→ Rα)α be an fpqc covering family,

and write R̃ =
∏
α Rα. Let Č(R/R̃)• denote the Čech nerve of R → R̃, a cosimplicial object

given degree-wise by the (n+ 1)-fold tensor product

Č(R/R̃)n = R̃⊗R · · · ⊗R R̃.

Now, a derived prestack X satisfies fpqc descent if for all such fpqc covering families, the
canonical morphism

(2.1) X(R)→ lim←−
n∈∆

X(Č(R/R̃)n)

is invertible.

2.4. Given a simplicial commutative ring R, we let Spec(R) denote the derived prestack
represented by R.

Proposition 2.5. For any simplicial commutative ring R, the presheaf Spec(R) is an fpqc sheaf.
In particular, the fpqc topology is subcanonical.

This follows from the fact that, for any fpqc covering morphism A → B in SCRing, the
canonical morphism A→ lim←−n∈∆

Č(A/B)n is invertible. This can be shown using the associated

Bousfield–Kan spectral sequence, which degenerates on the second page. Alternatively it follows
immediately from some general machinery developed by Lurie, see [2, Thm. D.6.3.5].

Definition 2.6. An affine derived scheme is a derived stack which is isomorphic to Spec(R)
for some simplicial commutative ring R.
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We let DSchaff denote the ∞-category of derived affine schemes, which is equivalent to
(SCRing)op by construction.

2.7. In order to give the definition of derived scheme, we need to define the notion of open
immersion between derived stacks.

We begin with the following preliminary definition:

Definition 2.8. A homomorphism of simplicial commutative rings R→ R′ is locally of finite
presentation if it exhibits R′ as a compact object of SCRingR, i.e. if the functor

A 7→ MapsSCRingR
(R′,A)

commutes with filtered colimits.

Now let j : U → X be a morphism of derived stacks. First suppose that X = Spec(R)
and U = Spec(A) are both affine. In this case we say that j is an open immersion if the
corresponding homomorphism R→ A is locally of finite presentation, flat, and an epimorphism,
i.e. the co-diagonal homomorphism A⊗R A→ A is invertible.

Next suppose that U is possibly non-affine. Then we say that j is an open immersion
if it is a monomorphism, and there exists a family (Uα → U)α which induces an effective
epimorphism1

∐
α Uα → U, such that each Uα is affine, and each composite Uα → X is an open

immersion of affine derived schemes.

Uα

U X

Finally, we define j to be an open immersion in the general case if, for any affine derived
scheme Spec(R) and any morphism Spec(R)→ X, the base change U×X Spec(R)→ Spec(R) is
an open immersion in the above sense.

2.9. We are now ready to give the definition of derived scheme.

Definition 2.10.

(i) A Zariski cover of a derived stack X is a family (jα : Uα ↪→ X)α where each jα is an open
immersion, and the induced morphism ∐

α

Uα → X

is an effective epimorphism.

(ii) An affine Zariski cover of a derived stack X is a Zariski cover (Uα ↪→ X)α where each Uα is
an affine derived scheme.

(iii) A derived stack X is schematic if it admits an affine Zariski cover. A derived scheme is a
schematic derived stack.

1Recall that a morphism of sheaves X→ Y is an effective epimorphism if the canonical morphism of sheaves

lim−→
n∈∆op

Č(X/Y)n → Y

is invertible. Here Č(X/Y)• is the Čech nerve, a simplicial object with Č(X/Y)n = X×Y · · · ×Y X (the (n+ 1)-fold
fibred product).



6

2.11. We say that a classical scheme X is a derived stack which admits an affine Zariski cover
(Spec(Rα) ↪→ X)α by classical affine schemes, i.e. where Rα are discrete. In this case X is
discrete as a presheaf (i.e. it takes values in sets), and therefore this does indeed recover the
classical notion of scheme.

The inclusion CRing ↪→ SCRing defines an inclusion Schaff ↪→ DSchaff . Given a derived
prestack X, we let Xcl denote its restriction to the classical site. For an affine derived scheme
X = Spec(R), we have Xcl = Spec(π0(R)) by adjunction. More generally, Xcl is a classical
scheme for any derived scheme X; we refer to it as the underlying classical scheme. The functor
X 7→ Xcl is right adjoint to the inclusion of classical schemes into derived schemes.

3. Quasi-coherent sheaves.

3.1. Let Spec(R) be an affine derived scheme. We define the stable∞-category of quasi-coherent
sheaves on S by

Qcoh(Spec(R)) = ModR.

This defines a presheaf of ∞-categories

(3.1) (DSchaff)op →∞-Cat,

where for a morphism Spec(R′) → Spec(R) the contravariant functoriality f∗ is induced by
M 7→ M⊗R R′.

3.2. Let X be a derived stack. We define the stable ∞-category of quasi-coherent sheaves on X

as the limit

Qcoh(X) = lim←−
S→X

Qcoh(S)

over morphisms S→ X, where S is an affine derived scheme. That is, we extend the presheaf
(3.1) to a presheaf

(3.2) (DStk)op →∞-Cat

by right Kan extension along the Yoneda embedding.

Thus a quasi-coherent sheaf F on X consists of the data of

(1) For every affine derived scheme S = Spec(R) and every morphism f : S → X, a quasi-
coherent sheaf f∗(F) ∈ Qcoh(S) (i.e. an R-module).

(2) For every commutative triangle

S′ = Spec(R′) X

S = Spec(R)

f ′

g
f

an isomorphism g∗(f∗F)→ (f ′)∗F in Qcoh(S′).

(3) A homotopy coherent system of compatibilities between these isomorphisms.

3.3. Taking symmetric monoidal structures into account, the presheaf (3.1) actually takes values
in symmetric monoidal ∞-categories, and its right Kan extension provides a lift of (3.2) (since
the forgetful functor from symmetric monoidal ∞-categories to plain ∞-categories preserves
and detects limits).

In particular, the ∞-category Qcoh(X) is canonically symmetric monoidal for each derived
stack X, as are the functors f∗.
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3.4. In the schematic case, there is a simpler description of the ∞-category Qcoh(X):

Proposition 3.5. Let X be a derived scheme. Then we have a canonical equivalence of ∞-
categories

(3.3) Qcoh(X)
∼−→ lim←−

U↪→X

Qcoh(U),

where the limit is taken over open immersions U→ X with U an affine derived scheme.

Proof. As a right Kan extension, the presheaf Qcoh(−) sends colimits of derived stacks to limits.
Choosing an affine Zariski cover (Xα ↪→ X)α, we have therefore a canonical equivalence

Qcoh(X) = lim←−
n∈∆

Qcoh(Č(Xα/X)n),

where Č(Xα/X)• denotes the Čech nerve of
∐
α Xα → X. Using the induced Zariski cover

(Uα ↪→ U)α, where Uα = Xα×X U, we get an analogous description of Qcoh(U) for any open
U ↪→ X. This reduces us to showing that the canonical functor

Qcoh(V)→ lim←−
U↪→X

Qcoh(V×
X

U)

is an equivalence, where V ↪→ X is any of the terms of the Čech nerve. By an easy cofinality
argument, this is equivalent to showing the equivalence (3.3) where X is replaced by any of the
terms of the Čech nerve.

Suppose that each of the pairwise intersections of the Xα’s were affine; then we would have
reduced to the affine case, which is obvious. We are not so far from that: since each of the
Xα’s themselves are affine, we know that their pairwise intersections are open subschemes in
affine derived schemes, and hence are separated, which is equivalent to their underlying classical
schemes being separated, and implies that they admit affine Zariski covers where each of the
pairwise intersections are affine. Thus we can run the argument again to reduce from the
separated case to the affine case, and conclude. �

3.6. Next we wish to define the ∞-category of perfect complexes on a derived stack.

Definition 3.7. An R-module M is perfect if it can be built from R using finite colimits and
direct summands.

Remark 3.8. Let R be an ordinary commutative ring. Then under the equivalence between
ModR and the derived category of (ordinary) R-modules, perfect R-modules correspond to
bounded cochain complexes of finitely generated projective R-modules.

Exercise 3.9. Let M be an R-module. Show that the following conditions are equivalent:

(i) M is perfect.

(ii) M is compact, i.e. MapsModR
(M,−) commutes with filtered colimits.

(iii) M is dualizable, or equivalently, N 7→ M⊗N commutes with limits (as an endofunctor of
ModR).

We say that a quasi-coherent sheaf F on X is perfect, or a perfect complex, if for every affine
derived scheme S and every morphism f : S→ X, the quasi-coherent sheaf f∗(F) is perfect. We
let Perf(X) denote the full subcategory of Qcoh(X) spanned by perfect complexes.

Proposition 3.10. Let X be a derived stack. Then a quasi-coherent sheaf F on X is perfect iff
it is dualizable.
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The claim is that F is dualizable iff f∗F is dualizable for all morphisms f : S → X with S
affine. This follows formally from the description of dualizable objects given in statement (iii) of
Exercise 3.9 (which holds in any stable symmetric monoidal presentable ∞-category where the
monoidal product commutes with colimits in each argument). Alternatively, given duals (f∗F)∨

for each f : S→ X, one can construct a global dual F∨ by hand.

3.11. The conditions of perfectness and compactness are less closely related in general. However,
we have the following result, which will be our goal for next time:

Theorem 3.12 (Toën). Let X be a quasi-compact quasi-separated derived scheme. Then a
quasi-coherent sheaf on X is perfect iff it is compact.
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