
Lecture 4
Zariski descent for algebraic K-theory

Our goal for this lecture is to demonstrate Zariski descent for algebraic K-theory.

1. Algebraic K-theory.

1.1. Let C be a small stable∞-category. We say that C is idempotent-complete if the canonical
functor

C→ (C)idem

is an equivalence. Recall that (C)idem, the idempotent-completion, can be defined as the
full subcategory of presheaves on C generated by the representables under direct summands;
equivalently it is the full subcategory of compact objects in the ind-completion: (C)idem =
Ind(C)comp.

In particular, for any stable presentable ∞-category C, the full subcategory (C)comp is
idempotent-complete.

1.2. Nonconnective algebraic K-theory defines a functor

(1.1) K : Stabidem → Spt

from the ∞-category of small stable idempotent-complete ∞-categories (and exact functors) to
the ∞-category of spectra.

This functor has two especially important properties:

(i) K preserves filtered colimits.

(ii) For any exact sequence of small stable idempotent-complete ∞-categories

C′ → C→ C′′,

the induced sequence of spectra

K(C′)→ K(C)→ K(C′′)

is an exact triangle.

Instead of recalling the construction of the functor K, we will instead take an axiomatic
approach. The idea is that the arguments we make will actually apply to a large class of
interesting functors.

Definition 1.3. Let E : Stab→ Spt be a functor. We say that it is continuous if it satisfies (i)
and localizing if it satisfies (iii).

Example 1.4. Nonconnective K-theory is continuous and localizing; see [2]. The reader can also
find a construction of the functor K in loc. cit.

Remark 1.5. By applying the “connective cover” functor to K : Stabidem → Spt, we obtain the
connective K-theory functor Kcn : Stabidem → Sptcn. Connective K-theory fails to be localizing;
instead it satisfies a weaker property called additivity : it sends any split exact sequence in
Stabidem to a split exact sequence of spectra.

On the other hand, Spt→ Sptcn commutes with limits, so any descent property we show for
nonconnective K-theory will give us a descent result for connective K-theory (as a presheaf of
connective spectra).

1.6.
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2. The localization sequence in K-theory. The discussion in this section will apply to any
localizing functor E instead of K.

2.1. Given a quasi-compact open immersion j : U ↪→ X, we write

K(X)U = K(Perf(X)U).

Recall from Lecture 3 that Perf(X)U denotes the full subcategory of perfect complexes on X
which vanish on U.

Theorem 2.2 (Thomason). Let j : U ↪→ X be a quasi-compact open immersion of qcqs derived
schemes. Then there is a canonical exact triangle

K(X)U → K(X)→ K(U)

of spectra.

Proof. This follows from the exactness of the sequence

Perf(X)U ↪→ Perf(X)→ Perf(U),

which we saw in Lecture 3, in view of the localizing property of the functor K : Stabidem →
Spt. �

Remark 2.3. When the schemes are classical and regular (nonsingular), we can identify the fibre
term K(X)U more explicitly; we will come back to this later this lecture.

3. Zariski descent in K-theory. As in the previous section, we can replace K by any localizing
functor E in this section as well.

3.1. We have:

Theorem 3.2 (Thomason). Let X be a qcqs derived scheme and let X = U ∪ V be a Zariski
open cover. Then the induced square of spectra

K(X) K(U)

K(V) K(U ∩V)

is cartesian.

Remark 3.3. We will not make this explicit here, but it follows from a theorem of Voevodsky
[9] that on the full subcategory DSchqcqs of quasi-compact quasi-separated derived schemes,

the above condition is equivalent to Čech descent with respect to the Zariski topology for the
presheaf of spectra K : (DSchqcqs)

op → Spt.

Proof. The claim is that the canonical map

δ : K(X)→ K(U) ×
K(U∩V)

K(V)

is invertible. It suffices to show that the map induced on the fibres,

ε : Fib(K(X)→ K(U))→ Fib(K(V)→ K(U ∩V)),
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is invertible. Indeed, write F := K(U)×K(U∩V) K(V) and consider the diagram of cartesian
squares

Fib(K(X)→ K(U)) K(X)

Fib(K(V)→ K(U ∩V)) F K(V)

0 K(U) K(U ∩V).

ε δ

By stability of the ∞-category of spectra, each of these squares, in particular the upper one, is
also cocartesian.

By the localization sequence the map ε is identified with the canonical map

K(X)U → K(V)U∩V

which is induced by the canonical functor

Perf(X)U → Perf(V)U∩V,

which is an equivalence by Zariski excision for the presheaf of∞-categories X 7→ Perf(X) (Lecture
3). �

4. Coherent sheaves and G-theory. When the schemes are classical and regular (nonsingu-
lar), one can identify the fibre term in the localization sequence much more explicitly.

4.1. First we define coherent sheaves in the derived setting. The definition is simpler when we
impose a finiteness condition on the schemes.

Definition 4.2. Let R be a simplicial commutative ring. We say that R is coherent if the
following hold:

(i) π0(R) is coherent in the ordinary sense, i.e. every finitely generated ideal is finitely presented.

(ii) For each i, the π0(R)-module πi(R) is of finite presentation.

We say that R is noetherian if it is coherent and π0(R) is noetherian in the ordinary sense
(i.e. every ideal is finitely generated).

The following is a generalization of the notion of “pseudocoherence” from SGA 6.

Definition 4.3. Let R be a coherent simplicial commutative ring. An R-module M is almost
perfect if the following hold:

(i) M is eventually connective, i.e. there exists some integer i such that πn(M) = 0 for all n < i.

(ii) For each i, the π0(R)-module πi(M) is of finite presentation.

Exercise 4.4. The property of almost perfectness is stable under finite (co)limits and direct
summands.

Corollary 4.5. Let R ∈ SCRing be coherent. Then any perfect R-module is almost perfect.

Proof. Since R itself is almost perfect as an R-module, this follows from Exercise 4.4. �

Remark 4.6. One can show that an R-module M is perfect iff it is almost perfect and of finite
tor-amplitude.

Remark 4.7. One can define almost perfectness without the coherence assumption on R; see [4,
§ 7.2.4].
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Definition 4.8. Let R be a coherent simplicial commutative ring. An R-module M is coherent
if it is almost perfect and eventually coconnective, i.e. there exists some integer i such that
πn(M) = 0 for all n > 0.

We let Modcoh
R denote the full subcategory of ModR spanned by coherent R-modules. This is

a stable idempotent-complete subcategory.

Remark 4.9. Let R be an ordinary commutative ring. Then we can think of M as a cochain
complex of (ordinary) R-modules, and coherence amounts to the condition that it is bounded
(above and below), and its cohomologies Hi(M) are finitely presented H0(R)-modules. Thus

Modcoh
R is equivalent to the bounded derived category of coherent sheaves on Spec(R) in the

usual sense.

Remark 4.10. Unlike in the classical setting, there is no inclusion Modperf
R ⊂ Modcoh

R in general.
Indeed, R itself may not be eventually coconnective.

If we suppose that R is eventually coconnective, then any perfect R-module M is eventually
coconnective, since the latter property is stable under finite (co)limits and direct summands. In

this case we do have an inclusion Modperf
R ⊂ Modcoh

R .

4.11. We now globalize the above definitions.

Definition 4.12. Let X be a derived scheme. We say that X is locally coherent if for any affine
derived scheme S = Spec(R) and any open immersion j : S ↪→ X, the simplicial commutative
ring R is coherent. We say that X is coherent if it is locally coherent and quasi-compact.

Given a locally coherent derived scheme X, we say that a quasi-coherent sheaf F ∈ Qcoh(X)
is coherent if for any affine derived scheme S = Spec(R) and any open immersion j : S ↪→ X, the
inverse image j∗F is coherent. We let Coh(X) ⊂ Qcoh(X) denote the full subcategory spanned
by coherent sheaves. By the discussion above, this is an idempotent-complete stable small
∞-category.

4.13. Let X be a locally coherent derived scheme.

Definition 4.14. The G-theory of X is defined as the spectrum

G(X) = K(Coh(X)).

For a classical noetherian scheme X, a theorem of Schlichting [6] implies:

Theorem 4.15. Let X be a noetherian classical scheme. Then the spectrum G(X) is connective.

If we suppose further that X is regular (nonsingular), then one can show that the inclusion
Perf(X) ⊂ Coh(X) is an equivalence [3, Exp. I]. Therefore, we have:

Proposition 4.16. Let X be a regular noetherian classical scheme. Then the canonical map of
spectra

K(X)→ G(X)

is an equivalence.

Corollary 4.17. Let X be a regular noetherian classical scheme. Then K(X) is connective, i.e.
the canonical map of spectra

Kcn(X)→ K(X)

is an equivalence.
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4.18. Quillen’s dévissage shows:

Theorem 4.19 (Quillen). Let X be a noetherian classical scheme, j : U ↪→ X an open immersion,
and i : Z ↪→ X a complementary closed immersion. Then we have an exact triangle of spectra

G(Z)→ G(X)→ G(U).

In particular, if X is regular, then we get K(X)U = G(Z) in this situation.

4.20. For derived schemes, the relation between regularity and an isomorphism K(X) ≈ G(X) is
more subtle. As pointed out above, there is not even an inclusion Perf(X) ⊂ Coh(X) in general,
and hence no canonical map K(X)→ G(X).

Let R ∈ SCRing be coherent. Say that R is almost regular if any coherent R-module M is
of finite tor-amplitude, hence perfect. Then by definition, if R is eventually coconnective and

almost regular, we have an equivalence Modperf
R = Modcoh

R , and in particular an isomorphism of
spectra

K(R)
∼−→ G(R).

If π0(R) is regular, it is easy to see that R is almost regular iff π0(R) is of finite tor-amplitude
as an R-module. See [1] for further discussion.
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