Exercise sheet 0

1. Show that $\mathbf{Z}/n\mathbf{Z}$ is not projective as a **Z**-module.

2. Let $\phi : M \to N$ be a homomorphism of f.g. projective A-modules. Show that neither the kernel nor the cokernel is necessarily projective.

3. Let A be a commutative ring and $f \in A$ an element. Show that there is a canonical isomorphism of rings $A[f^{-1}] \to A[f^{-1}] \otimes_A A[f^{-1}]$, and moreover that $\operatorname{Tor}_i^A(A[f^{-1}], A[f^{-1}]) = 0$ for all i > 0.

4. Let A be a commutative ring and $I \subseteq A$ an ideal. Show that there is a canonical isomorphism of rings $A/I \rightarrow A/I \otimes_A A/I$, but that $Tor_1^A(A/I, A/I)$ may not vanish.