Exercise sheet 11

1. Let A be a ring.
(a) Let M and N be invertible A-modules. Show that $[\mathrm{M}]=[\mathrm{N}]$ in $\mathrm{K}_{0}(\mathrm{~A})$ iff $\mathrm{M} \simeq \mathrm{N}$ as A-modules.
(b) Let M be a f.g. projective A-module such that $[M] \in K_{0}(A)$ is a unit. Show that M is invertible as an A-module.
(c) Show that the group homomorphism $\operatorname{Pic}(A) \rightarrow K_{0}(A)^{\times}$is injective but not always bijective.
(a) The condition is obviously sufficient. Necessity follows from the fact that the composite

$$
\operatorname{Pic}(\mathrm{A}) \rightarrow \mathrm{K}_{0}(\mathrm{~A}) \xrightarrow{\operatorname{det}_{\mathrm{A}}} \operatorname{Pic}(\mathrm{~A})
$$

is the identity.
(b) Let $x \in \mathrm{~K}_{0}(\mathrm{~A})$ be an element such that $[\mathrm{M}] \cdot x=1$ in $\mathrm{K}_{0}(\mathrm{~A})$. We may write $x=[\mathrm{N}]-\left[\mathrm{A}^{\oplus n}\right]$ for some $\mathrm{N} \in \operatorname{Mod}_{\mathrm{A}}^{\mathrm{fgproj}}$ and $n \geqslant 0$ (Lecture 3), and $[\mathrm{M}] \cdot x=1$ is equivalent to

$$
\left[\mathrm{M} \otimes_{\mathrm{A}} \mathrm{~N}\right]=\left[\mathrm{A} \oplus \mathrm{M}^{\oplus n}\right]
$$

in $\mathrm{K}_{0}(\mathrm{~A})$. It follows that $\mathrm{M} \otimes_{\mathrm{A}} \mathrm{N}$ and $\mathrm{A} \oplus \mathrm{M}^{\oplus n}$ are stably equivalent (Lecture 3), i.e.,

$$
\left(\mathrm{M} \otimes_{\mathrm{A}} \mathrm{~N}\right) \oplus \mathrm{A}^{\oplus k} \simeq\left(\mathrm{~A} \oplus \mathrm{M}^{\oplus n}\right) \oplus \mathrm{A}^{\oplus k}
$$

for some $k \geqslant 0$. Localizing at any prime ideal \mathfrak{p} and using Nakayama, we find that

$$
\mathrm{rk}_{\mathrm{A}_{\mathfrak{p}}}\left(\mathrm{M}_{\mathfrak{p}}\right) \cdot \mathrm{rk}_{\mathrm{A}_{\mathfrak{p}}}\left(\mathrm{N}_{\mathfrak{p}}\right)+k=1+n \cdot \mathrm{rk}_{\mathrm{A}_{\mathfrak{p}}}\left(\mathrm{M}_{\mathfrak{p}}\right)+k
$$

hence $\mathrm{rk}_{\mathrm{A}_{\mathfrak{p}}}\left(\mathrm{M}_{\mathfrak{p}}\right) \cdot\left(\mathrm{rk}_{\mathrm{A}_{\mathfrak{p}}}\left(\mathrm{N}_{\mathfrak{p}}\right)-n\right)=1$ and in particular $\mathrm{M}_{\mathfrak{p}}$ is of rank one for every \mathfrak{p}. Thus M is invertible (Lecture §11.1).
(c) If $[\mathrm{M}] \in \operatorname{Pic}(\mathrm{A})$ is in the kernel, then $[\mathrm{M}]=[\mathrm{A}]$ in $\mathrm{K}_{0}(\mathrm{~A})$ and hence $[\mathrm{M}]=[\mathrm{A}]$ in $\operatorname{Pic}(\mathrm{A})$ by (a). So the map is injective.
Let A be a PID, so that every f.g. projective A-module is free. Then $K_{0}(A) \simeq \mathbf{Z}$. Similarly Pic(A) is the trivial group, since every invertible A-module is free of rank one. Thus the map is identified in this case with $1 \hookrightarrow\{ \pm 1\}$.
2. Let A be a regular ring. Show that the homomorphism $\operatorname{Pic}(A) \rightarrow \operatorname{Pic}\left(A\left[T_{1}, \ldots, T_{n}\right]\right)$, induced by extension of scalars, is bijective for all $n>0$.
The map is a retraction of the map $\mathrm{K}_{0}(\mathrm{~A}) \rightarrow \mathrm{K}_{0}\left(\mathrm{~A}\left[\mathrm{~T}_{1}, \ldots, \mathrm{~T}_{n}\right]\right)$ (in the category of sets). The latter is an isomorphism since A is regular (Lecture §5.3), hence so is the former.

In other words, we have a commutative diagram

where the vertical arrows are inverse image along $\phi: A \rightarrow A\left[T_{1}, \ldots, T_{n}\right]$. Since the middle vertical arrow is bijective, it follows that the left-hand vertical arrow is injective and the right-hand vertical arrow is surjective.
3. Let A be an integral domain. Recall the rank homomorphism rk: $G_{0}(A) \rightarrow \mathbf{Z}$ (Sheet 3, Exercise 4), which we regard as a homomorphism rk: $K_{0}(A) \rightarrow \mathbf{Z}$ by restricting along the canonical homomorphism $\mathrm{K}_{0}(\mathrm{~A}) \rightarrow \mathrm{G}_{0}(\mathrm{~A})$. Let $x \in \mathrm{~K}_{0}(\mathrm{~A})$ be a class of positive rank $(\operatorname{rk}(x)>0)$. Show that

$$
n \cdot x=[\mathrm{M}]
$$

for some $\mathrm{M} \in \operatorname{Mod}_{\mathrm{A}}^{\text {fgproj }}$ and integer $n \geqslant 0$.
Hint: reduce to the case where A is of finite dimension d, and use a theorem of Serre which states that any projective A-module is the direct sum of a free module and a projective module of rank $\leqslant d$ (see [Serre, Modules projectifs et espaces fibrés à fibre vectorielle]).
Using (Sheet 5, Exercise 1), we can reduce to the case where A is a finite type Z-algebra, and in particular of some finite dimension d. Note that it is harmless to replace x by $m \cdot x$ for an integer $m>0$. By performing such a replacement if necessary, we can assume that $\operatorname{rk}(n \cdot x) \geqslant d$. Write $n \cdot x=[\mathrm{N}]-\left[\mathrm{A}^{\oplus k}\right]$ for some $\mathrm{N} \in \operatorname{Mod}_{\mathrm{A}}^{\mathrm{fgproj}}$ and $k \geqslant 0$ (Lecture 3), i.e., ${ }^{1}$

$$
n \cdot x+k=[\mathrm{N}] .
$$

Now N has rank equal to $\operatorname{rk}(n \cdot x+k) \geqslant d+k$. By Serre's theorem, it is the direct sum of a free module of rank $\geqslant k$ and a projective module. In particular, we may write $\mathrm{N} \simeq \mathrm{A}^{\oplus k} \oplus \mathrm{M}$ where M is projective. Then $n \cdot x+k=[\mathrm{N}]=k+[\mathrm{M}]$, so $n \cdot x=[\mathrm{M}]$ as claimed.
4. Let k be an algebraically closed field and $\mathrm{A}=k[\mathrm{X}, \mathrm{Y}] /\left\langle\mathrm{X}^{2}-\mathrm{Y}^{3}\right\rangle$ (an integral domain of dimension 1). Let $f \in \operatorname{Frac}(\mathrm{~A})^{\times}$denote the rational function $(\mathrm{X}-\mathrm{Y}) / \mathrm{Y}$. For the closed point $x_{0}=\mathrm{V}(\langle\mathrm{X}, \mathrm{Y}\rangle)$ in $|\operatorname{Spec}(\mathrm{A})|$, show that $f_{\mathfrak{p}\left(x_{0}\right)} \in \operatorname{Frac}\left(\mathrm{A}_{\mathfrak{p}\left(x_{0}\right)}\right)$ is not contained in the subring $\mathrm{A}_{\mathfrak{p}\left(x_{0}\right)}$. For every other closed point $x \neq x_{0}$, show that $f_{\mathfrak{p}(x)}$ is even contained in the subgroup of units $\mathrm{A}_{\mathfrak{p}(x)}^{\times}$. Deduce that the principal Cartier divisor $\operatorname{div}_{\mathrm{A}}(f) \in \operatorname{Cart}(\mathrm{A})$ is nonzero.
We saw that A is an integral domain of dimension 1 in the proof of Exercise 2 on Sheet 10.

[^0]Let \mathfrak{m} be a maximal ideal of A. Since k is algebraically closed, this corresponds by Exercise 1 on Sheet 8 to a maximal ideal $\langle\mathrm{X}-a, \mathrm{Y}-b\rangle \subset k[\mathrm{X}, \mathrm{Y}]$ (where $a, b \in k$) which contains $\left\langle\mathrm{X}^{2}-\mathrm{Y}^{3}\right\rangle$. The latter condition means $a^{2}=b^{3}$.

Note that the only way $f=(\mathrm{X}-\mathrm{Y}) / \mathrm{Y} \in \operatorname{Frac}(\mathrm{A})$ could belong to $\mathrm{A}_{\mathfrak{m}} \subset$ $\operatorname{Frac}\left(\mathrm{A}_{\mathfrak{m}}\right)=\operatorname{Frac}(\mathrm{A})$ is if Y becomes a unit in $\mathrm{A}_{\mathfrak{m}}$, i.e., if $\mathrm{Y} \notin \mathfrak{m}=\langle\mathrm{X}-a, \mathrm{Y}-b\rangle$. This is equivalent to $b \neq 0$, or, since $a^{2}=b^{3}=0$, to $(a, b) \neq(0,0)$. Moreover, if $(a, b) \neq(0,0)$ then $f \in \mathrm{~A}_{\langle\mathrm{X}-a, \mathrm{Y}-b\rangle}$ is even a unit because $\mathrm{X}-\mathrm{Y} \notin \mathfrak{m}$ also.

[^0]: ${ }^{1}$ Recall 1 denotes the unit $[\mathrm{A}] \in \mathrm{K}_{0}(\mathrm{~A})$, so $k=1+\cdots+1=[\mathrm{A}]+\cdots+[\mathrm{A}]=\left[\mathrm{A}^{\oplus k}\right]$.

