Exercise sheet 11

1. Let A be a ring.

(a) Let M and N be invertible A-modules. Show that [M] = [N] in $K_0(A)$ iff $M \simeq N$ as A-modules.

(b) Let M be a f.g. projective A-module such that $[M] \in K_0(A)$ is a unit. Show that M is invertible as an A-module.

(c) Show that the group homomorphism $Pic(A) \to K_0(A)^{\times}$ is injective but not always bijective.

(a) The condition is obviously sufficient. Necessity follows from the fact that the composite

$$\operatorname{Pic}(A) \to \operatorname{K}_0(A) \xrightarrow{\operatorname{det}_A} \operatorname{Pic}(A)$$

is the identity.

(b) Let $x \in K_0(A)$ be an element such that $[M] \cdot x = 1$ in $K_0(A)$. We may write $x = [N] - [A^{\oplus n}]$ for some $N \in Mod_A^{fgproj}$ and $n \ge 0$ (Lecture 3), and $[M] \cdot x = 1$ is equivalent to

$$[\mathbf{M} \otimes_{\mathbf{A}} \mathbf{N}] = [\mathbf{A} \oplus \mathbf{M}^{\oplus n}]$$

in $K_0(A)$. It follows that $M \otimes_A N$ and $A \oplus M^{\oplus n}$ are stably equivalent (Lecture 3), i.e.,

$$(\mathbf{M} \otimes_{\mathbf{A}} \mathbf{N}) \oplus \mathbf{A}^{\oplus k} \simeq (\mathbf{A} \oplus \mathbf{M}^{\oplus n}) \oplus \mathbf{A}^{\oplus k}$$

for some $k \ge 0$. Localizing at any prime ideal **p** and using Nakayama, we find that

$$\operatorname{rk}_{A_{\mathfrak{p}}}(M_{\mathfrak{p}}) \cdot \operatorname{rk}_{A_{\mathfrak{p}}}(N_{\mathfrak{p}}) + k = 1 + n \cdot \operatorname{rk}_{A_{\mathfrak{p}}}(M_{\mathfrak{p}}) + k,$$

hence $\operatorname{rk}_{A_{\mathfrak{p}}}(M_{\mathfrak{p}}) \cdot (\operatorname{rk}_{A_{\mathfrak{p}}}(N_{\mathfrak{p}}) - n) = 1$ and in particular $M_{\mathfrak{p}}$ is of rank one for every \mathfrak{p} . Thus M is invertible (Lecture §11.1).

(c) If $[M] \in Pic(A)$ is in the kernel, then [M] = [A] in $K_0(A)$ and hence [M] = [A] in Pic(A) by (a). So the map is injective.

Let A be a PID, so that every f.g. projective A-module is free. Then $K_0(A) \simeq \mathbb{Z}$. Similarly Pic(A) is the trivial group, since every invertible A-module is free of rank one. Thus the map is identified in this case with $1 \hookrightarrow \{\pm 1\}$.

2. Let A be a regular ring. Show that the homomorphism $Pic(A) \rightarrow Pic(A[T_1, ..., T_n])$, induced by extension of scalars, is bijective for all n > 0.

The map is a retraction of the map $K_0(A) \to K_0(A[T_1, \ldots, T_n])$ (in the category of sets). The latter is an isomorphism since A is regular (Lecture §5.3), hence so is the former.

In other words, we have a commutative diagram

$$\begin{array}{ccc} \operatorname{Pic}(A) & \longrightarrow & \operatorname{K}_{0}(A) & \xrightarrow{\operatorname{det}} & \operatorname{Pic}(A) \\ & & & \downarrow \phi^{*} & & \downarrow \phi^{*} \\ \operatorname{Pic}(A[T_{1}, \dots, T_{n}]) & \longrightarrow & \operatorname{K}_{0}(A[T_{1}, \dots, T_{n}]) & \xrightarrow{\operatorname{det}} & \operatorname{Pic}(A[T_{1}, \dots, T_{n}]) \end{array}$$

where the vertical arrows are inverse image along $\phi : A \to A[T_1, \ldots, T_n]$. Since the middle vertical arrow is bijective, it follows that the left-hand vertical arrow is injective and the right-hand vertical arrow is surjective.

3. Let A be an integral domain. Recall the rank homomorphism $rk : G_0(A) \to \mathbb{Z}$ (Sheet 3, Exercise 4), which we regard as a homomorphism $rk : K_0(A) \to \mathbb{Z}$ by restricting along the canonical homomorphism $K_0(A) \to G_0(A)$. Let $x \in K_0(A)$ be a class of positive rank (rk(x) > 0). Show that

$$n \cdot x = [\mathbf{M}]$$

for some $\mathcal{M} \in \operatorname{Mod}_{\mathcal{A}}^{\operatorname{fgproj}}$ and integer $n \ge 0$.

Hint: reduce to the case where A is of finite dimension d, and use a theorem of Serre which states that any projective A-module is the direct sum of a free module and a projective module of rank $\leq d$ (see [Serre, Modules projectifs et espaces fibrés à fibre vectorielle]).

Using (Sheet 5, Exercise 1), we can reduce to the case where A is a finite type **Z**-algebra, and in particular of some finite dimension d. Note that it is harmless to replace x by $m \cdot x$ for an integer m > 0. By performing such a replacement if necessary, we can assume that $\operatorname{rk}(n \cdot x) \ge d$. Write $n \cdot x = [N] - [A^{\oplus k}]$ for some $N \in \operatorname{Mod}_A^{\operatorname{fgproj}}$ and $k \ge 0$ (Lecture 3), i.e.,¹

$$n \cdot x + k = [\mathbf{N}].$$

Now N has rank equal to $\operatorname{rk}(n \cdot x + k) \ge d + k$. By Serre's theorem, it is the direct sum of a free module of rank $\ge k$ and a projective module. In particular, we may write $N \simeq A^{\oplus k} \oplus M$ where M is projective. Then $n \cdot x + k = [N] = k + [M]$, so $n \cdot x = [M]$ as claimed.

4. Let k be an algebraically closed field and $A = k[X, Y]/\langle X^2 - Y^3 \rangle$ (an integral domain of dimension 1). Let $f \in \operatorname{Frac}(A)^{\times}$ denote the rational function (X - Y)/Y. For the closed point $x_0 = V(\langle X, Y \rangle)$ in $|\operatorname{Spec}(A)|$, show that $f_{\mathfrak{p}(x_0)} \in \operatorname{Frac}(A_{\mathfrak{p}(x_0)})$ is not contained in the subring $A_{\mathfrak{p}(x_0)}$. For every other closed point $x \neq x_0$, show that $f_{\mathfrak{p}(x)}$ is even contained in the subgroup of units $A_{\mathfrak{p}(x)}^{\times}$. Deduce that the principal Cartier divisor div_A $(f) \in \operatorname{Cart}(A)$ is nonzero.

We saw that A is an integral domain of dimension 1 in the proof of Exercise 2 on Sheet 10.

¹Recall 1 denotes the unit $[A] \in K_0(A)$, so $k = 1 + \dots + 1 = [A] + \dots + [A] = [A^{\oplus k}]$.

Let \mathfrak{m} be a maximal ideal of A. Since k is algebraically closed, this corresponds by Exercise 1 on Sheet 8 to a maximal ideal $\langle X - a, Y - b \rangle \subset k[X, Y]$ (where $a, b \in k$) which contains $\langle X^2 - Y^3 \rangle$. The latter condition means $a^2 = b^3$.

Note that the only way $f = (X - Y)/Y \in Frac(A)$ could belong to $A_{\mathfrak{m}} \subset Frac(A_{\mathfrak{m}}) = Frac(A)$ is if Y becomes a unit in $A_{\mathfrak{m}}$, i.e., if $Y \notin \mathfrak{m} = \langle X - a, Y - b \rangle$. This is equivalent to $b \neq 0$, or, since $a^2 = b^3 = 0$, to $(a, b) \neq (0, 0)$. Moreover, if $(a, b) \neq (0, 0)$ then $f \in A_{\langle X-a, Y-b \rangle}$ is even a unit because $X - Y \notin \mathfrak{m}$ also.