Exercise sheet 12

- 1. Let $\mathcal{O}_{\rm K}$ be the ring of integers in a number field K. Show that there is a canonical isomorphism between the group of Weil divisors modulo linear equivalence, and the ideal class group of $\mathcal{O}_{\rm K}$.
- **2.** Let A be a noetherian ring and \mathfrak{p} a minimal prime ideal. Show that $[V(\mathfrak{p})]$ is nonzero in $CH_*(A)$.
- **3.** Let A be an integral domain. Show that the set Cart⁺(A) of effective Cartier divisors admits a canonical monoid structure, and there is a canonical injective homomorphism

$$\operatorname{Cart}^+(A) \to \operatorname{Cart}(A)$$

which exhibits Cart(A) as the group completion of $Cart^+(A)$.

4. Let A be a noetherian ring of dimension d. Recall the homomorphism $\gamma : \mathbb{Z}_*(A) \to \mathbb{G}_0(A)$ defined in Sheet 9, Exercise 3. Note that γ sends $\mathbb{Z}_k(A)$ to $\mathbb{G}_0(A)_{\leqslant k}$, the subgroup generated by classes [M] such that $\dim(\operatorname{Supp}_A(M)) \leqslant k$.

Let $M \in Mod_A^{fg}$ and suppose that $Supp_A(M)$ is of pure dimension n. Prove the formula

$$\gamma([\mathbf{M}]_n) = [\mathbf{M}]$$

in $\operatorname{G}_0(A)_{\leqslant n}/\operatorname{G}_0(A)_{\leqslant n-1}$.