Exercise sheet 2

1. Prove the Proposition from $\S 1.3$ in the lecture: every regular sequence in a ring A is Koszul-regular. (Hint: induction.)
Note that for a sequence of length one, it is obvious that it is regular iff Koszulregular. We let $n>1$ and assume that every regular sequence of length $n-1$, in any ring, is Koszul-regular. Let $\left(a_{1}, \ldots, a_{n}\right)$ be a regular sequence in a ring A. Write $\mathrm{K}^{\prime}=\operatorname{Kosz}_{\mathrm{A}}\left(a_{2}, \ldots, a_{n}\right)$ and $\mathrm{K}=\operatorname{Kosz}_{\mathrm{A}}\left(a_{1}, \ldots, a_{n}\right)$. We have

$$
\mathrm{K}=\operatorname{Kosz}_{\mathrm{A}}\left(a_{1}\right) \otimes_{\mathrm{A}} \mathrm{~K}^{\prime} \simeq \mathrm{A} /\left\langle a_{1}\right\rangle \otimes_{\mathrm{A}} \mathrm{~K}^{\prime}
$$

where the first equality is the definition and the second is a quasi-isomorphism because a_{1} is a non-zerodivisor. But the formula ($\mathrm{M}_{1} \otimes_{\mathrm{A}} \cdots \otimes_{\mathrm{A}} \mathrm{M}_{k}$) $\otimes_{\mathrm{A}} \mathrm{B} \simeq$ $\left(\mathrm{M}_{1} \otimes_{\mathrm{A}} \mathrm{B}\right) \otimes_{\mathrm{B}} \cdots \otimes_{\mathrm{B}}\left(\mathrm{M}_{k} \otimes_{\mathrm{A}} \mathrm{B}\right)$, for A-modules M_{i} and B an A-algebra, shows that the right-hand side above is isomorphic to the Koszul complex of the image of $\left(a_{2}, \ldots, a_{n}\right)$ in $\mathrm{A} /\left\langle a_{1}\right\rangle$:

$$
\mathrm{K} \simeq \operatorname{Kosz}_{\mathrm{A} /\left\langle a_{1}\right\rangle}\left(\bar{a}_{2}, \ldots, \bar{a}_{n}\right) .
$$

By the induction hypothesis, $\left(\bar{a}_{2}, \ldots, \bar{a}_{n}\right)$ is Koszul-regular. So K is acyclic in positive degrees.
2. Let k be a field, $\mathrm{A}=k[x] /\left\langle x^{2}\right\rangle$. Show that k, viewed as an A-module, is not perfect.
By the Proposition in $\S 2.1$, it will suffice to show that k is of infinite Tor-amplitude as an A-module. We claim $\operatorname{Tor}_{i}^{\mathrm{A}}(k, k)$ are all nonzero for all $i \geqslant 0$. Let's build a free resolution of k. We start with the A-linear surjection $\mathrm{A} \rightarrow k$, whose kernel is the ideal $\langle x\rangle$. This is the image of the map $\mathrm{A} \rightarrow \mathrm{A}$ which is multiplication by x. So we have the resolution $\ldots \rightarrow \mathrm{A} \xrightarrow{x} \mathrm{~A}$ so far. The kernel of the multiplication map $x: \mathrm{A} \rightarrow \mathrm{A}$ is $\operatorname{Ann}_{\mathrm{A}}(x)$. But this is again $\langle x\rangle$ so we end up with the infinite resolution

$$
\cdots \rightarrow \mathrm{A} \xrightarrow{x} \mathrm{~A} \xrightarrow{x} \mathrm{~A}
$$

Tensoring with k over A produces the infinite complex

$$
\cdots \rightarrow k \xrightarrow{0} k \xrightarrow{0} k
$$

which has nonzero homology in every degree.
3. Let $\phi: \mathrm{A} \rightarrow \mathrm{B}$ be a flat ring homomorphism (i.e., ϕ exhibits B as a flat A -module).
(i) Show that if a f.g. A-module M is of Tor-amplitude $\leqslant n$, then so is the B-module $\mathrm{M} \otimes_{\mathrm{A}} \mathrm{B}$.
(ii) Suppose that ϕ is faithfully flat, i.e., that a sequence of A-modules $\mathrm{M}^{\prime} \rightarrow$ $M \rightarrow M^{\prime \prime}$ is exact iff $M^{\prime} \otimes_{A} B \rightarrow M \otimes_{A} B \rightarrow M^{\prime \prime} \otimes_{A} B$ is exact. Show that a f.g. A-module M is of Tor-amplitude $\leqslant n$ if and only if $\mathrm{M} \otimes_{\mathrm{A}} \mathrm{B}$ is of Tor-amplitude $\leqslant n$.
(i) Since B is flat, $M \otimes_{A} B \simeq M \otimes_{A}^{L} B$. Thus for every B-module N,

$$
\operatorname{Tor}_{i}^{\mathrm{B}}\left(\mathrm{M} \otimes_{\mathrm{A}} \mathrm{~B}, \mathrm{~N}\right)=\mathrm{H}_{i}\left(\mathrm{M} \otimes_{\mathrm{A}}^{\mathrm{L}} \mathrm{~B} \otimes_{\mathrm{B}}^{\mathrm{L}} \mathrm{~N}\right) \simeq \mathrm{H}_{i}\left(\mathrm{M} \otimes_{\mathrm{A}}^{\mathrm{L}} \mathrm{~N}_{[\mathrm{A}]}\right)=\operatorname{Tor}_{i}^{\mathrm{A}}\left(\mathrm{M}, \mathrm{~N}_{[\mathrm{A}]}\right),
$$

whence the claim. Alternatively, choose a finite fgproj resolution of M. The proof of the Proposition in $\S 2.1$ of the lecture actually shows that M admits such a resolution of length n. Applying the functor ? $\otimes_{\mathrm{A}} \mathrm{B}$, which is exact since B is flat, will result in a complex which is still acyclic in positive degrees, hence a resolution of $\mathrm{M} \otimes_{\mathrm{A}} \mathrm{B}$. Using this resolution to compute $\operatorname{Tor}_{i}^{\mathrm{B}}\left(\mathrm{M} \otimes_{\mathrm{A}} \mathrm{B}, \mathrm{N}\right)$ shows that these groups will vanish if $i>n$.

- Warning: if ϕ is not flat, (i) is false. As the second argument shows, what is potentially problematic is that the extension of scalars of a resolution may not be a resolution again. For example, take $f \in \mathrm{~A}$ a non-zerodivisor, so that $\mathrm{M}=\mathrm{A} / f$ has a resolution by the Koszul complex $\operatorname{Kosz}_{\mathrm{A}}(f)=[\mathrm{A} \rightarrow \mathrm{A}]$. Take $\phi: \mathrm{A} \rightarrow \mathrm{B}$ to be a map which sends f to a zerodivisor. Then $\operatorname{Kosz}_{\mathrm{A}}(f) \otimes_{\mathrm{A}} \mathrm{B}=\operatorname{Kosz}_{\mathrm{B}}(\phi(f))$ is not acyclic in degree 1. For an actual example, take e.g. $\mathrm{A}=\mathbf{Z}, f=2$, $\mathrm{B}=\mathbf{Z} / 4 \mathbf{Z}$. Then $\mathbf{M}=\mathbf{A} / f=\mathbf{Z} / 2 \mathbf{Z}$ is of Tor-amplitude $\leqslant 1$ as a \mathbf{Z}-module, but $\mathrm{M} \otimes_{\mathrm{A}} \mathrm{B}=\mathbf{Z} / 2 \mathbf{Z}$ is of infinite Tor-amplitude as a $\mathbf{Z} / 4 \mathbf{Z}$-module (which can be proven just like in Exercise 2).
(ii) Let M be a f.g. A-module such that $\mathrm{M} \otimes_{\mathrm{A}} \mathrm{B}$ is of Tor-amplitude $\leqslant n$. The claim is that for every A-module $\mathrm{N}, \operatorname{Tor}_{i}^{\mathrm{A}}(\mathrm{M}, \mathrm{N})=0$ for $i>n$. Recall that since ϕ is faithfully flat, this can be checked after extending scalars. Since ϕ is flat, we have:

$$
\begin{aligned}
\operatorname{Tor}_{i}^{\mathrm{A}}(\mathrm{M}, \mathrm{~N}) \otimes_{\mathrm{A}} \mathrm{~B} & =\mathrm{H}_{i}\left(\mathrm{M} \otimes_{\mathrm{A}}^{\mathrm{L}} \mathrm{~N}\right) \otimes_{\mathrm{A}} \mathrm{~B} \\
& \simeq \mathrm{H}_{i}\left(\left(\mathrm{M} \otimes_{\mathrm{A}}^{\mathrm{L}} \mathrm{~N}\right) \otimes_{\mathrm{A}} \mathrm{~B}\right) \\
& \simeq \mathrm{H}_{i}\left(\left(\mathrm{M} \otimes_{\mathrm{A}} \mathrm{~B}\right) \otimes_{\mathrm{A}}^{\mathrm{L}}\left(\mathrm{~N} \otimes_{\mathrm{A}} \mathrm{~B}\right)\right) \\
& =\operatorname{Tor}_{i}^{\mathrm{B}}\left(\mathrm{M} \otimes_{\mathrm{A}} \mathrm{~B}, \mathrm{~N} \otimes_{\mathrm{A}} \mathrm{~B}\right)=0
\end{aligned}
$$

implicitly using the fact that ? $\otimes_{\mathrm{A}}^{\mathrm{L}} \mathrm{B}=$? $\otimes_{\mathrm{A}} \mathrm{B}$ since ϕ is flat.
4. Let A be a noetherian ring and M a finitely generated A -module. Show that M is of finite length iff $M_{\mathfrak{p}}=0$ for all non-maximal prime ideals \mathfrak{p}. (Use the Proposition in $\S 1.3$ of the lecture.)
The length of an A-module M is the maximal length of a composition series (a filtration where the successive quotients are all simple, i.e., are nonzero and have no non-trivial, non-proper submodules). For example, A has length 1 iff A is a field. For a field, length coincides with dimension of vector spaces.
By the Proposition in $\S 1.3, \mathrm{M}$ admits a finite increasing filtration $\left(\mathrm{M}_{i}\right)_{i}$ where the quotients $\mathrm{M}_{i+1} / \mathrm{M}_{i}$ are of the form $\mathrm{A} / \mathfrak{p}_{i}, \mathfrak{p}_{i}$ being prime ideals. Localizing at a prime \mathfrak{p}_{i}, we get

$$
\left(\mathrm{M}_{i+1}\right)_{\mathfrak{p}_{i}} /\left(\mathrm{M}_{i}\right)_{\mathfrak{p}_{i}} \simeq\left(\mathrm{M}_{i+1} / \mathrm{M}_{i}\right)_{\mathfrak{p}_{i}} \simeq\left(\mathrm{~A}_{\mathfrak{p}_{i}}\right) / \mathfrak{p}_{i} \mathrm{~A}_{\mathfrak{p}_{i}}=\kappa\left(\mathfrak{p}_{i}\right)
$$

for all i. In particular these are nonzero, so $\left(\mathrm{M}_{i+1}\right)_{\mathfrak{p}_{i}}$ are nonzero.

Suppose $\mathrm{M}_{\mathfrak{p}}=0$ for all non-maximal primes \mathfrak{p}. Then all the primes \mathfrak{p}_{i} must be maximal by above. Thus the successive quotients $\mathrm{M}_{i+1} / \mathrm{M}_{i} \simeq \mathrm{~A} / \mathfrak{p}_{i}$ are simple, so the filtration $\left(\mathrm{M}_{i}\right)_{i}$ is a composition series for M. In particular, M is of finite length.

Conversely if M is of finite length, choose a composition series $\left(\mathrm{M}_{i}\right)_{i}$. Let \mathfrak{p} be a non-maximal prime. We have $\mathrm{M}_{1}=\mathrm{A} / \mathfrak{m}$ for some maximal ideal \mathfrak{m}, hence $\left(M_{1}\right)_{\mathfrak{p}} \simeq A_{\mathfrak{p}} / \mathfrak{m} A_{\mathfrak{p}}=0$ since \mathfrak{m} is not contained in \mathfrak{p}. Similarly $M_{2} / M_{1} \simeq A / \mathfrak{m}$ for some (possibly different) maximal ideal \mathfrak{m}, hence $\left(\mathrm{M}_{2}\right)_{\mathfrak{p}}=\left(\mathrm{M}_{2}\right)_{\mathfrak{p}} /\left(\mathrm{M}_{1}\right)_{\mathfrak{p}}=$ $R_{\mathfrak{p}} / \mathfrak{m} A_{p}=0$ by the same argument. Repeating this we eventually get $M_{p}=0$.

