Exercise sheet 2

1. Prove the Proposition from §1.3 in the lecture: every regular sequence in a ring A is Koszul-regular. (Hint: induction.)

Note that for a sequence of length one, it is obvious that it is regular iff Koszulregular. We let n > 1 and assume that every regular sequence of length n - 1, in any ring, is Koszul-regular. Let (a_1, \ldots, a_n) be a regular sequence in a ring A. Write $K' = Kosz_A(a_2, \ldots, a_n)$ and $K = Kosz_A(a_1, \ldots, a_n)$. We have

 $\mathbf{K} = \mathrm{Kosz}_{\mathbf{A}}(a_1) \otimes_{\mathbf{A}} \mathbf{K}' \simeq \mathbf{A}/\langle a_1 \rangle \otimes_{\mathbf{A}} \mathbf{K}'$

where the first equality is the definition and the second is a quasi-isomorphism because a_1 is a non-zerodivisor. But the formula $(M_1 \otimes_A \cdots \otimes_A M_k) \otimes_A B \simeq$ $(M_1 \otimes_A B) \otimes_B \cdots \otimes_B (M_k \otimes_A B)$, for A-modules M_i and B an A-algebra, shows that the right-hand side above is isomorphic to the Koszul complex of the image of (a_2, \ldots, a_n) in $A/\langle a_1 \rangle$:

$$\mathrm{K} \simeq \mathrm{Kosz}_{\mathrm{A}/\langle a_1 \rangle}(\overline{a}_2, \ldots, \overline{a}_n).$$

By the induction hypothesis, $(\overline{a}_2, \ldots, \overline{a}_n)$ is Koszul-regular. So K is acyclic in positive degrees.

2. Let k be a field, $A = k[x]/\langle x^2 \rangle$. Show that k, viewed as an A-module, is not perfect.

By the Proposition in §2.1, it will suffice to show that k is of infinite Tor-amplitude as an A-module. We claim $\operatorname{Tor}_i^A(k,k)$ are all nonzero for all $i \ge 0$. Let's build a free resolution of k. We start with the A-linear surjection $A \to k$, whose kernel is the ideal $\langle x \rangle$. This is the image of the map $A \to A$ which is multiplication by x. So we have the resolution $\ldots \to A \xrightarrow{x} A$ so far. The kernel of the multiplication map $x : A \to A$ is $\operatorname{Ann}_A(x)$. But this is again $\langle x \rangle$ so we end up with the infinite resolution

 $\cdots \to A \xrightarrow{x} A \xrightarrow{x} A$

Tensoring with k over A produces the infinite complex

 $\dots \to k \xrightarrow{0} k \xrightarrow{0} k$

which has nonzero homology in every degree.

3. Let $\phi : A \to B$ be a flat ring homomorphism (i.e., ϕ exhibits B as a flat A-module).

(i) Show that if a f.g. A-module M is of Tor-amplitude $\leq n$, then so is the B-module $M \otimes_A B$.

(ii) Suppose that ϕ is *faithfully* flat, i.e., that a sequence of A-modules $M' \to M \to M''$ is exact iff $M' \otimes_A B \to M \otimes_A B \to M'' \otimes_A B$ is exact. Show that a f.g. A-module M is of Tor-amplitude $\leq n$ if and only if $M \otimes_A B$ is of Tor-amplitude $\leq n$.

(i) Since B is flat, $M \otimes_A B \simeq M \otimes_A^{\mathbf{L}} B$. Thus for every B-module N,

 $\operatorname{Tor}_{i}^{\mathrm{B}}(\mathrm{M}\otimes_{\mathrm{A}}\mathrm{B},\mathrm{N}) = \mathrm{H}_{i}(\mathrm{M}\otimes_{\mathrm{A}}^{\mathbf{L}}\mathrm{B}\otimes_{\mathrm{B}}^{\mathbf{L}}\mathrm{N}) \simeq \mathrm{H}_{i}(\mathrm{M}\otimes_{\mathrm{A}}^{\mathbf{L}}\mathrm{N}_{[\mathrm{A}]}) = \operatorname{Tor}_{i}^{\mathrm{A}}(\mathrm{M},\mathrm{N}_{[\mathrm{A}]}),$

whence the claim. Alternatively, choose a finite fgproj resolution of M. The proof of the Proposition in §2.1 of the lecture actually shows that M admits such a resolution of length n. Applying the functor $? \otimes_A B$, which is exact since B is flat, will result in a complex which is still acyclic in positive degrees, hence a resolution of $M \otimes_A B$. Using this resolution to compute $\operatorname{Tor}_i^B(M \otimes_A B, N)$ shows that these groups will vanish if i > n.

▶ Warning: if ϕ is not flat, (i) is false. As the second argument shows, what is potentially problematic is that the extension of scalars of a resolution may not be a resolution again. For example, take $f \in A$ a non-zerodivisor, so that M = A/f has a resolution by the Koszul complex $\text{Kosz}_A(f) = [A \rightarrow A]$. Take $\phi : A \rightarrow B$ to be a map which sends f to a zerodivisor. Then $\text{Kosz}_A(f) \otimes_A B = \text{Kosz}_B(\phi(f))$ is not acyclic in degree 1. For an actual example, take e.g. $A = \mathbf{Z}$, f = 2, $B = \mathbf{Z}/4\mathbf{Z}$. Then $M = A/f = \mathbf{Z}/2\mathbf{Z}$ is of Tor-amplitude ≤ 1 as a \mathbf{Z} -module, but $M \otimes_A B = \mathbf{Z}/2\mathbf{Z}$ is of infinite Tor-amplitude as a $\mathbf{Z}/4\mathbf{Z}$ -module (which can be proven just like in Exercise 2).

(ii) Let M be a f.g. A-module such that $M \otimes_A B$ is of Tor-amplitude $\leq n$. The claim is that for every A-module N, $\operatorname{Tor}_i^A(M, N) = 0$ for i > n. Recall that since ϕ is faithfully flat, this can be checked after extending scalars. Since ϕ is flat, we have:

$$\operatorname{Tor}_{i}^{A}(M, N) \otimes_{A} B = \operatorname{H}_{i}(M \otimes_{A}^{\mathbf{L}} N) \otimes_{A} B$$
$$\simeq \operatorname{H}_{i}((M \otimes_{A}^{\mathbf{L}} N) \otimes_{A} B)$$
$$\simeq \operatorname{H}_{i}((M \otimes_{A} B) \otimes_{A}^{\mathbf{L}} (N \otimes_{A} B))$$
$$= \operatorname{Tor}_{i}^{B}(M \otimes_{A} B, N \otimes_{A} B) = 0$$

implicitly using the fact that $? \otimes_{A}^{\mathbf{L}} B = ? \otimes_{A} B$ since ϕ is flat.

4. Let A be a noetherian ring and M a finitely generated A-module. Show that M is of finite length iff $M_p = 0$ for all non-maximal prime ideals p. (Use the Proposition in §1.3 of the lecture.)

The length of an A-module M is the maximal length of a composition series (a filtration where the successive quotients are all simple, i.e., are nonzero and have no non-trivial, non-proper submodules). For example, A has length 1 iff A is a field. For a field, length coincides with dimension of vector spaces.

By the Proposition in §1.3, M admits a finite increasing filtration $(M_i)_i$ where the quotients M_{i+1}/M_i are of the form A/\mathfrak{p}_i , \mathfrak{p}_i being prime ideals. Localizing at a prime \mathfrak{p}_i , we get

$$(\mathcal{M}_{i+1})_{\mathfrak{p}_i}/(\mathcal{M}_i)_{\mathfrak{p}_i} \simeq (\mathcal{M}_{i+1}/\mathcal{M}_i)_{\mathfrak{p}_i} \simeq (\mathcal{A}_{\mathfrak{p}_i})/\mathfrak{p}_i \mathcal{A}_{\mathfrak{p}_i} = \kappa(\mathfrak{p}_i)$$

for all *i*. In particular these are nonzero, so $(M_{i+1})_{p_i}$ are nonzero.

2

Suppose $M_{\mathfrak{p}} = 0$ for all non-maximal primes \mathfrak{p} . Then all the primes \mathfrak{p}_i must be maximal by above. Thus the successive quotients $M_{i+1}/M_i \simeq A/\mathfrak{p}_i$ are simple, so the filtration $(M_i)_i$ is a composition series for M. In particular, M is of finite length.

Conversely if M is of finite length, choose a composition series $(M_i)_i$. Let \mathfrak{p} be a non-maximal prime. We have $M_1 = A/\mathfrak{m}$ for some maximal ideal \mathfrak{m} , hence $(M_1)_{\mathfrak{p}} \simeq A_{\mathfrak{p}}/\mathfrak{m}A_{\mathfrak{p}} = 0$ since \mathfrak{m} is not contained in \mathfrak{p} . Similarly $M_2/M_1 \simeq A/\mathfrak{m}$ for some (possibly different) maximal ideal \mathfrak{m} , hence $(M_2)_{\mathfrak{p}} = (M_2)_{\mathfrak{p}}/(M_1)_{\mathfrak{p}} =$ $R_{\mathfrak{p}}/\mathfrak{m}A_{\mathfrak{p}} = 0$ by the same argument. Repeating this we eventually get $M_{\mathfrak{p}} = 0$.