Exercise sheet 2

1. Prove the Proposition from §1.3 in the lecture: every regular sequence in a ring A
is Koszul-regular. (Hint: induction.)

Note that for a sequence of length one, it is obvious that it is regular iff Koszul-
regular. We let n > 1 and assume that every regular sequence of length n — 1,
in any ring, is Koszul-regular. Let (ay,...,a,) be a regular sequence in a ring A.
Write K" = Kosza (as, . . ., a,) and K = Kosza (a4, .. ., a,). We have

K = Kosza(a;) @a K' ~ A/{a;) @5 K’

where the first equality is the definition and the second is a quasi-isomorphism
because a; is a non-zerodivisor. But the formula (M; ®a -+ ®a Mg) ®a B ~
(M; ®4 B) ®p -+ - ®@p (Mg ®4 B), for A-modules M; and B an A-algebra, shows
that the right-hand side above is isomorphic to the Koszul complex of the image
of (as,...,a,) in A/(ay):

K ~ Kosza /(a,) (T2, - . ., Gp).

By the induction hypothesis, (ay,...,a,) is Koszul-regular. So K is acyclic in
positive degrees.

2. Let k be a field, A = k[z]/(z?). Show that k, viewed as an A-module, is not
perfect.

By the Proposition in §2.1, it will suffice to show that k is of infinite Tor-amplitude
as an A-module. We claim Tor?(k, k) are all nonzero for all i > 0. Let’s build a
free resolution of k. We start with the A-linear surjection A — k, whose kernel is
the ideal (z). This is the image of the map A — A which is multiplication by z.
So we have the resolution ... — A 5 A so far. The kernel of the multiplication
map = : A — A is Annu(x). But this is again (z) so we end up with the infinite
resolution
o ASASA

Tensoring with & over A produces the infinite complex
SN N Y

which has nonzero homology in every degree.

3. Let ¢ : A — B be a flat ring homomorphism (i.e., ¢ exhibits B as a flat A-module).

(i) Show that if a f.g. A-module M is of Tor-amplitude < n, then so is the
B-module M ®,4 B.

(ii) Suppose that ¢ is faithfully flat, i.e., that a sequence of A-modules M’ —
M — M” is exact iff M @, B - M ®x B —+ M” ®, B is exact. Show that a f.g.
A-module M is of Tor-amplitude < n if and only if M ®4 B is of Tor-amplitude

< n.
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(i) Since B is flat, M ® B ~ M ®@% B. Thus for every B-module N,
Torp (M ®4 B,N) = H;(M ®% B ®F N) ~ H;(M ®% Na)) = Tor;* (M, Npa)),

whence the claim. Alternatively, choose a finite fgproj resolution of M. The proof
of the Proposition in §2.1 of the lecture actually shows that M admits such a
resolution of length n. Applying the functor ? ®, B, which is exact since B is flat,
will result in a complex which is still acyclic in positive degrees, hence a resolution
of M ®, B. Using this resolution to compute Tor®(M ®, B, N) shows that these
groups will vanish if ¢ > n.

» Warning: if ¢ is not flat, (i) is false. As the second argument shows, what is
potentially problematic is that the extension of scalars of a resolution may not be
a resolution again. For example, take f € A a non-zerodivisor, so that M = A/ f
has a resolution by the Koszul complex Kosza (f) = [A — A]. Take ¢ : A — B to
be a map which sends f to a zerodivisor. Then Kosza(f) ®a B = Koszg(o(f))
is not acyclic in degree 1. For an actual example, take e.g. A = Z, f = 2,
B =7Z/4Z. Then M = A/f = Z/27Z is of Tor-amplitude < 1 as a Z-module, but
M ®a B = Z/2Z is of infinite Tor-amplitude as a Z/4Z-module (which can be
proven just like in Exercise 2).

(ii) Let M be a f.g. A-module such that M ®, B is of Tor-amplitude < n. The
claim is that for every A-module N, Tor*(M,N) = 0 for 4 > n. Recall that since
¢ is faithfully flat, this can be checked after extending scalars. Since ¢ is flat, we
have:

Tor®(M,N) @, B = H;(M ®% N) ®, B
~ H,((M 2% N) @5 B)
~ H;((M @4 B) @% (N @4 B))
= Tor? (M ®a B,N®,B) =0

implicitly using the fact that ? @% B =? @, B since ¢ is flat.

. Let A be a noetherian ring and M a finitely generated A-module. Show that M is
of finite length iff M, = 0 for all non-maximal prime ideals p. (Use the Proposition
in §1.3 of the lecture.)

The length of an A-module M is the mazimal length of a composition series (a
filtration where the successive quotients are all simple, i.e., are nonzero and have
no non-trivial, non-proper submodules). For example, A has length 1 iff A is a
field. For a field, length coincides with dimension of vector spaces.

By the Proposition in §1.3, M admits a finite increasing filtration (M;); where the
quotients M;;1/M; are of the form A/p;, p; being prime ideals. Localizing at a
prime p;, we get

(Mi+1)Pi/(Mi)pi = (MiJrl/Mi)Pi = (Apz)/p'LApz = H(F'Z)

for all 7. In particular these are nonzero, so (M;11),, are nonzero.
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Suppose M, = 0 for all non-maximal primes p. Then all the primes p; must be
maximal by above. Thus the successive quotients M; 1/M; ~ A/p; are simple,
so the filtration (M;); is a composition series for M. In particular, M is of finite
length.

Conversely if M is of finite length, choose a composition series (M;);. Let p be
a non-maximal prime. We have M; = A/m for some maximal ideal m, hence
(M), >~ A,/mA, = 0 since m is not contained in p. Similarly My/M; >~ A/m
for some (possibly different) maximal ideal m, hence (M), = (Ms),/(M;), =
R,/mA, = 0 by the same argument. Repeating this we eventually get M, = 0.



