
Exercise sheet 2

1. Prove the Proposition from §1.3 in the lecture: every regular sequence in a ring A
is Koszul-regular. (Hint: induction.)

Note that for a sequence of length one, it is obvious that it is regular iff Koszul-
regular. We let n > 1 and assume that every regular sequence of length n − 1,
in any ring, is Koszul-regular. Let (a1, . . . , an) be a regular sequence in a ring A.
Write K′ = KoszA(a2, . . . , an) and K = KoszA(a1, . . . , an). We have

K = KoszA(a1)⊗A K′ ' A/〈a1〉 ⊗A K′

where the first equality is the definition and the second is a quasi-isomorphism
because a1 is a non-zerodivisor. But the formula (M1 ⊗A · · · ⊗A Mk) ⊗A B '
(M1 ⊗A B)⊗B · · · ⊗B (Mk ⊗A B), for A-modules Mi and B an A-algebra, shows
that the right-hand side above is isomorphic to the Koszul complex of the image
of (a2, . . . , an) in A/〈a1〉:

K ' KoszA/〈a1〉(a2, . . . , an).

By the induction hypothesis, (a2, . . . , an) is Koszul-regular. So K is acyclic in
positive degrees.

2. Let k be a field, A = k[x]/〈x2〉. Show that k, viewed as an A-module, is not
perfect.

By the Proposition in §2.1, it will suffice to show that k is of infinite Tor-amplitude
as an A-module. We claim TorAi (k, k) are all nonzero for all i > 0. Let’s build a
free resolution of k. We start with the A-linear surjection A� k, whose kernel is
the ideal 〈x〉. This is the image of the map A→ A which is multiplication by x.

So we have the resolution . . .→ A
x−→ A so far. The kernel of the multiplication

map x : A→ A is AnnA(x). But this is again 〈x〉 so we end up with the infinite
resolution

· · · → A
x−→ A

x−→ A

Tensoring with k over A produces the infinite complex

· · · → k
0−→ k

0−→ k

which has nonzero homology in every degree.

3. Let φ : A→ B be a flat ring homomorphism (i.e., φ exhibits B as a flat A-module).

(i) Show that if a f.g. A-module M is of Tor-amplitude 6 n, then so is the
B-module M⊗A B.

(ii) Suppose that φ is faithfully flat, i.e., that a sequence of A-modules M′ →
M→ M′′ is exact iff M′ ⊗A B→ M⊗A B→ M′′ ⊗A B is exact. Show that a f.g.
A-module M is of Tor-amplitude 6 n if and only if M⊗A B is of Tor-amplitude
6 n.
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(i) Since B is flat, M⊗A B ' M⊗L
A B. Thus for every B-module N,

TorBi (M⊗A B,N) = Hi(M⊗L
A B⊗L

B N) ' Hi(M⊗L
A N[A]) = TorAi (M,N[A]),

whence the claim. Alternatively, choose a finite fgproj resolution of M. The proof
of the Proposition in §2.1 of the lecture actually shows that M admits such a
resolution of length n. Applying the functor ?⊗A B, which is exact since B is flat,
will result in a complex which is still acyclic in positive degrees, hence a resolution
of M⊗A B. Using this resolution to compute TorBi (M⊗A B,N) shows that these
groups will vanish if i > n.

I Warning: if φ is not flat, (i) is false. As the second argument shows, what is
potentially problematic is that the extension of scalars of a resolution may not be
a resolution again. For example, take f ∈ A a non-zerodivisor, so that M = A/f
has a resolution by the Koszul complex KoszA(f) = [A→ A]. Take φ : A→ B to
be a map which sends f to a zerodivisor. Then KoszA(f) ⊗A B = KoszB(φ(f))
is not acyclic in degree 1. For an actual example, take e.g. A = Z, f = 2,
B = Z/4Z. Then M = A/f = Z/2Z is of Tor-amplitude 6 1 as a Z-module, but
M ⊗A B = Z/2Z is of infinite Tor-amplitude as a Z/4Z-module (which can be
proven just like in Exercise 2).

(ii) Let M be a f.g. A-module such that M⊗A B is of Tor-amplitude 6 n. The
claim is that for every A-module N, TorAi (M,N) = 0 for i > n. Recall that since
φ is faithfully flat, this can be checked after extending scalars. Since φ is flat, we
have:

TorAi (M,N)⊗A B = Hi(M⊗L
A N)⊗A B

' Hi((M⊗L
A N)⊗A B)

' Hi((M⊗A B)⊗L
A (N⊗A B))

= TorBi (M⊗A B,N⊗A B) = 0

implicitly using the fact that ?⊗L
A B =?⊗A B since φ is flat.

4. Let A be a noetherian ring and M a finitely generated A-module. Show that M is
of finite length iff Mp = 0 for all non-maximal prime ideals p. (Use the Proposition
in §1.3 of the lecture.)

The length of an A-module M is the maximal length of a composition series (a
filtration where the successive quotients are all simple, i.e., are nonzero and have
no non-trivial, non-proper submodules). For example, A has length 1 iff A is a
field. For a field, length coincides with dimension of vector spaces.

By the Proposition in §1.3, M admits a finite increasing filtration (Mi)i where the
quotients Mi+1/Mi are of the form A/pi, pi being prime ideals. Localizing at a
prime pi, we get

(Mi+1)pi/(Mi)pi ' (Mi+1/Mi)pi ' (Api)/piApi = κ(pi)

for all i. In particular these are nonzero, so (Mi+1)pi are nonzero.



3

Suppose Mp = 0 for all non-maximal primes p. Then all the primes pi must be
maximal by above. Thus the successive quotients Mi+1/Mi ' A/pi are simple,
so the filtration (Mi)i is a composition series for M. In particular, M is of finite
length.

Conversely if M is of finite length, choose a composition series (Mi)i. Let p be
a non-maximal prime. We have M1 = A/m for some maximal ideal m, hence
(M1)p ' Ap/mAp = 0 since m is not contained in p. Similarly M2/M1 ' A/m
for some (possibly different) maximal ideal m, hence (M2)p = (M2)p/(M1)p =
Rp/mAp = 0 by the same argument. Repeating this we eventually get Mp = 0.


