Exercise sheet 2

- 1. Prove the Proposition from §1.3 in the lecture: every regular sequence in a ring A is Koszul-regular. (Hint: induction.)
- 2. Let k be a field, A = $k[x]/\langle x^2 \rangle$. Show that k, viewed as an A-module, is not perfect.
- **3.** Let $\phi : A \to B$ be a flat ring homomorphism.

(i) Show that if a f.g. A-module M is of Tor-amplitude $\leq n$, then so is the B-module $M \otimes_A B$.

(ii) Suppose that ϕ is *faithfully* flat, i.e., that a sequence of A-modules $M' \rightarrow M \rightarrow M''$ is exact iff $M' \otimes_A B \rightarrow M \otimes_A B \rightarrow M'' \otimes_A B$ is exact. Show that a f.g. A-module M is of Tor-amplitude $\leq n$ if and only if $M \otimes_A B$ is of Tor-amplitude $\leq n$.

4. Let A be a noetherian ring and M a finitely generated A-module. Show that M is of finite length iff $M_{\mathfrak{p}} = 0$ for all non-maximal prime ideals \mathfrak{p} . (Use the Proposition in §1.3 of the lecture.)

The length of an A-module M is the maximal length of a composition series (a filtration where the successive quotients are all simple, i.e., are nonzero and have no non-trivial, non-proper submodules). For example, A has length 1 iff A is a field. For a field, length coincides with dimension of vector spaces.