Exercise sheet 4

- 1. Let A be a commutative ring and M_{\bullet} a chain complex of A-modules. Show that if M_{\bullet} is acyclic, then it is perfect.
- **2.** Let A be a commutative ring and M_{\bullet} a chain complex of A-modules. Suppose that M_{\bullet} is *n*-connective for some integer *n*, i.e., $H_i(M_{\bullet}) = 0$ for i < n. Then there is a diagram of chain complexes

$$\mathcal{M}_{\bullet} \xleftarrow{q_{\mathrm{ls}}} \tau_{\geq n}(\mathcal{M}_{\bullet}) \to \mathcal{H}_{n}(\mathcal{M}_{\bullet})[n].$$

Here $\tau_{\geq n}(\mathbf{M}_{\bullet})$ denotes the truncated complex

$$\cdots \to \mathcal{M}_{n+2} \xrightarrow{d_{n+2}} \mathcal{M}_{n+1} \to \operatorname{Ker}(d_n) \to 0,$$

where $\operatorname{Ker}(d_n)$ is in degree n (and the differential $\operatorname{M}_{n+1} \to \operatorname{Ker}(d_n)$ factors through $\operatorname{Im}(d_{n+1}) \subseteq \operatorname{Ker}(d_n)$).

- **3.** Let A be a commutative ring and M_• a chain complex of A-modules. Show that the following conditions are equivalent:
 - (a) $H_i(M_{\bullet}) \neq 0$ for exactly one $i \in \mathbb{Z}$.

(b) M_{\bullet} is quasi-isomorphic to $H_i(M_{\bullet})[i]$, via a zig-zag $M_{\bullet} \leftarrow ? \rightarrow H_i(M_{\bullet})[i]$, where both arrows are quasi-isomorphisms.

4. (i) Give an example of a perfect complex P_{\bullet} over some ring A which is unbounded $(P_i \neq 0 \text{ for infinitely many } i \in \mathbf{Z}).$

(ii) Give an example of a perfect complex Q_{\bullet} over some ring A which has $H_i(Q_{\bullet}) \neq 0$ for at least two $i \in \mathbb{Z}$, and which is not a bounded complex of f.g. projective modules.