
Exercise sheet 6

1. Let A be a noetherian ring. Show that G0(A) is generated by classes [A/p] where
p is a prime ideal.

Recall from Lecture 1 that every f.g. A-module M admits a finite filtration whose
quotients are A-modules of the form A/p, with p ⊂ A prime. Then by the
Observation in §6.3,

[M] =
∑
i

[A/pi]

where {pi}i is a finite set of prime ideals.

2. Let A be a commutative ring. A chain complex M• of A-modules is called formal
if it is quasi-isomorphic to ⊕

i∈Z

Hi(M•)[i],

the complex with Hi(M•) in degree i and all differentials zero.

(i) Let k be a field. Show that every chain complex of k-modules is formal.

(ii) Give an example of a non-formal complex over a commutative ring A.

(i) Let V• ∈ Chk. Write Hi := Hi(V•) for all i ∈ Z for simplicity, and H• :=⊕
i∈Z Hi[i]. It will suffice to construct a morphism of chain complexes

φ : V• → H•

inducing the identity maps Hi → Hi on homologies.

Set Zi := Ker(di) and Bi := Im(di+1) so that Hi = Zi/Bi for all i. Since k is a
field, both short exact sequences

0→ Zi ↪→ Vi � Bi−1 → 0,

0→ Bi ↪→ Zi � Hn → 0

split, whence isomorphisms

Vi ' Zi ⊕ Bi−1 ' Bi ⊕ Hi ⊕ Bi−1.

Under these isomorphisms, the differential di : Vi → Vi−1 is induced by id :
Bi−1 → Bi−1 (and zero on the other components).

We define the morphism φ : V• → H• by the projections

Vi ' Bi ⊕ Hi ⊕ Bi−1
pr−→ Hi

for each i. This is clearly a morphism of chain complexes that induces identity
maps on homologies, hence it is a quasi-isomorphism.

(ii) It is somewhat tricky to show that two complexes are not quasi-isomorphic,
when they happen to have the same homology groups. One way to proceed is
by noting that some properties are invariant under quasi-isomorphism, such as
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perfectness or finite Tor-amplitude. Thus it will suffice to construct a perfect
complex M• which has at least two nontrivial homology groups, at least one of
which is not perfect. This will only be possible if the ring A is not regular (a
perfect complex has f.g. homology groups, so if the ring is regular, the homology
groups are perfect). Such an M• will have H• :=

⊕
i∈Z Hi(M•)[i] not perfect, hence

there will be no quasi-isomorphism M• ' H•.

Let k be a field and A = k[ε]/(ε2). Consider the complex of A-modules

M• =
(

0→ A
ε−→ A→ 0

)
.

Note that M• is a finite complex of f.g. free modules, so it is perfect. But we
have H0(M•) = k and from Sheet 2 we know that k is not perfect as an A-module.
Thus H• can not be perfect either. Indeed it will have infinite Tor-amplitude as

H• ⊗L
A N =

⊕
i∈Z

Hi(M•)[i]⊗L
A N =

⊕
i∈Z

(
Hi(M•)⊗L

A N
)

[i]

for any A-module N, and so Hn(H• ⊗L
A N) will contain Hn(H0(M•)⊗L

A N) 6= 0 for
all n > 0.

3. (i) Let A be a commutative ring and I ⊂ A an ideal contained in the Jacobson
radical of A. Show that the homomorphism M(A)→M(A/I), given by extension
of scalars along the quotient map φ : A → A/I, is injective. Recall that M(A)
denotes the monoid of isomorphism classes of f.g. projective A-modules. (Hint:
Nakayama.)

(ii) Suppose that I is a nil ideal, i.e., that every element x ∈ I is nilpotent. Let
φ : A→ A/I be the quotient map. Show that the homomorphism φ∗ : K0(A)→
K0(A/I) is invertible. (Hint: use the fact that idempotents lift along nil ideals in
associative rings, and apply this to the algebra of endomorphisms of A⊕n.)

(i) Let M and N be f.g. projective A-modules and suppose there exists a morphism
φ : M/IM→ N/IM of A/I-modules. Since M is projective, there exists a morphism
φ : M→ N such that the diagram

M N

M/IM N/IN

φ

φ

commutes. If φ is surjective, then so is φ. Equivalently, Q = Coker(φ) is zero iff
Q/IQ = 0; this follows from Nakayama since I is contained in the Jacobson radical
and since Q is finitely generated. Now suppose that φ is also injective. Then
since M is projective and φ is surjective, it admits a section σ : N→ M and M
splits as a direct sum K⊕ N, where K = Ker(φ). Now we have K/IK = 0 since φ
induces an isomorphism M/IM ' N/IN by assumption. Thus by Nakayama again
(since K is also f.g.), we conclude that K = 0. In particular, φ is an isomorphism.
This discussion shows that every A/I-module isomorphism M/IM ' N/IM lifts to
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an A-module isomorphism M ' N. In particular, the map M(A) → M(A/I) is
injective.

(ii) First of all, note that every nil ideal is contained in the Jacobson radical.

For injectivity, let x ∈ K0(A) such that φ∗(x) = 0 in K0(A/I). By the Lemma in

§3.1, we can write x = [M] − [A⊕n], where M ∈ Modfgproj
A and n > 0. Then we

have [M/IM] = [(A/I)⊕n] ∈ K0(A/I) so by part (ii) of the same Lemma, we deduce
that M/IM⊕ (A/I)⊕k ' (A/I)⊕n+k for some k > 0. Then by claim (i) above, it
follows that M⊕ A⊕k ' A⊕n+k as A-modules, and in particular [M] = [A⊕n] in
K0(A), i.e., x = 0.

For surjectivity, it will suffice to show that every f.g. projective A/I-module N
lifts to a f.g. projective A-module M (for which M ⊗A A/I = N). Since N is a
direct summand of a f.g. free module (A/I)⊕n, there is a corresponding projector
(= idempotent endomorphism)

e : (A/I)⊕n � N ↪→ (A/I)⊕n

whose image is N. Applying the hint to the homomorphism of matrix rings

EndA(A⊕n)→ EndA/I((A/I)
⊕n)

(which is the quotient by a nil ideal), we deduce that there exists an idempotent
endomorphism e : A⊕n → A⊕n lifting e. The image of e is a f.g. projective
A-module M lifting N.

For a proof of the claim in the hint, see e.g. [Bass, Algebraic K-theory, Chap. III,
Prop. 2.10].

4. Let φ : A→ B be a ring homomorphism which exhibits B as a f.g. free A-module
of rank d. Then we have [B] = d.[A] = d in K0(A). Show that the composites

K0(A)
φ∗−→ K0(B)

φ∗−→ K0(A)

K0(B)
φ∗−→ K0(A)

φ∗−→ K0(B)

are both given by multiplication by d.

By assumption, B is flat as an A-module. In particular, the square

A B

B B⊗A B = B′

φ

φ β

α

is Tor-independent. Thus by the base change formula (§6.2) we have

φ∗φ∗ = β∗α
∗ : K0(B)→ K0(B).
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Take x = [N] − [B⊕n] ∈ K0(B), N ∈ Modfgproj
B and n > 0 (recall every x can be

written in this form, by §3.1). We have

β∗α
∗(x) = β∗([N⊗B B⊗A B]− [B⊕n ⊗B B⊗A B])

= [N⊗B B] ∪ [B]− [B⊕n ⊗B B] ∪ [B]

= x ∪ d
as desired.

For the composite φ∗φ
∗ we first note

φ∗φ
∗[A] = φ∗[B] = [B[A]] = d.

Then by the projection formula,

d ∪ x = (φ∗φ
∗[A]) ∪ x = φ∗(φ

∗[A] ∪ φ∗(x)) = φ∗φ
∗([A] ∪ x) = φ∗φ

∗(x).

(Recall that φ∗ is a ring homomorphism and that [A] is the unit of the ring
structure on K0(A).)


