Exercise sheet 6

1. Let A be a noetherian ring. Show that $G_{0}(A)$ is generated by classes $[A / p]$ where \mathfrak{p} is a prime ideal.

Recall from Lecture 1 that every f.g. A-module M admits a finite filtration whose quotients are A-modules of the form $\mathrm{A} / \mathfrak{p}$, with $\mathfrak{p} \subset \mathrm{A}$ prime. Then by the Observation in §6.3,

$$
[\mathrm{M}]=\sum_{i}\left[\mathrm{~A} / \mathfrak{p}_{i}\right]
$$

where $\left\{\mathfrak{p}_{i}\right\}_{i}$ is a finite set of prime ideals.
2. Let A be a commutative ring. A chain complex M. of A-modules is called formal if it is quasi-isomorphic to

$$
\bigoplus_{i \in \mathbf{Z}} \mathrm{H}_{i}\left(\mathrm{M}_{\bullet}\right)[i],
$$

the complex with $\mathrm{H}_{i}\left(\mathrm{M}_{\bullet}\right)$ in degree i and all differentials zero.
(i) Let k be a field. Show that every chain complex of k-modules is formal.
(ii) Give an example of a non-formal complex over a commutative ring A.
(i) Let $\mathrm{V}_{\bullet} \in \mathrm{Ch}_{k}$. Write $\mathrm{H}_{i}:=\mathrm{H}_{i}\left(\mathrm{~V}_{\bullet}\right)$ for all $i \in \mathrm{Z}$ for simplicity, and $\mathrm{H}_{\bullet}:=$ $\bigoplus_{i \in \mathbf{Z}} \mathrm{H}_{i}[i]$. It will suffice to construct a morphism of chain complexes

$$
\phi: \mathrm{V}_{\bullet} \rightarrow \mathrm{H}_{\bullet}
$$

inducing the identity maps $\mathrm{H}_{i} \rightarrow \mathrm{H}_{i}$ on homologies.
Set $\mathrm{Z}_{i}:=\operatorname{Ker}\left(d_{i}\right)$ and $\mathrm{B}_{i}:=\operatorname{Im}\left(d_{i+1}\right)$ so that $\mathrm{H}_{i}=\mathrm{Z}_{i} / \mathrm{B}_{i}$ for all i. Since k is a field, both short exact sequences

$$
\begin{aligned}
& 0 \rightarrow \mathrm{Z}_{i} \hookrightarrow \mathrm{~V}_{i} \rightarrow \mathrm{~B}_{i-1} \rightarrow 0, \\
& 0 \rightarrow \mathrm{~B}_{i} \hookrightarrow \mathrm{Z}_{i} \rightarrow \mathrm{H}_{n} \rightarrow 0
\end{aligned}
$$

split, whence isomorphisms

$$
\mathrm{V}_{i} \simeq \mathrm{Z}_{i} \oplus \mathrm{~B}_{i-1} \simeq \mathrm{~B}_{i} \oplus \mathrm{H}_{i} \oplus \mathrm{~B}_{i-1}
$$

Under these isomorphisms, the differential $d_{i}: \mathrm{V}_{i} \rightarrow \mathrm{~V}_{i-1}$ is induced by id : $\mathrm{B}_{i-1} \rightarrow \mathrm{~B}_{i-1}$ (and zero on the other components).
We define the morphism $\phi: \mathrm{V}_{\bullet} \rightarrow \mathrm{H}_{\bullet}$ by the projections

$$
\mathrm{V}_{i} \simeq \mathrm{~B}_{i} \oplus \mathrm{H}_{i} \oplus \mathrm{~B}_{i-1} \xrightarrow{\mathrm{pr}} \mathrm{H}_{i}
$$

for each i. This is clearly a morphism of chain complexes that induces identity maps on homologies, hence it is a quasi-isomorphism.
(ii) It is somewhat tricky to show that two complexes are not quasi-isomorphic, when they happen to have the same homology groups. One way to proceed is by noting that some properties are invariant under quasi-isomorphism, such as
perfectness or finite Tor-amplitude. Thus it will suffice to construct a perfect complex M. which has at least two nontrivial homology groups, at least one of which is not perfect. This will only be possible if the ring A is not regular (a perfect complex has f.g. homology groups, so if the ring is regular, the homology groups are perfect). Such an M_{\bullet} will have $H_{\bullet}:=\bigoplus_{i \in \mathbf{Z}} H_{i}\left(M_{\bullet}\right)[i]$ not perfect, hence there will be no quasi-isomorphism $\mathrm{M}_{\bullet} \simeq \mathrm{H}_{\mathbf{\bullet}}$.
Let k be a field and $\mathrm{A}=k[\epsilon] /\left(\epsilon^{2}\right)$. Consider the complex of A-modules

$$
\mathrm{M}_{\bullet}=(0 \rightarrow \mathrm{~A} \xrightarrow{\epsilon} \mathrm{~A} \rightarrow 0) .
$$

Note that M. is a finite complex of f.g. free modules, so it is perfect. But we have $\mathrm{H}_{0}\left(\mathrm{M}_{\bullet}\right)=k$ and from Sheet 2 we know that k is not perfect as an A-module. Thus H. can not be perfect either. Indeed it will have infinite Tor-amplitude as

$$
\mathrm{H} \cdot \otimes_{\mathrm{A}}^{\mathbf{L}} \mathrm{N}=\bigoplus_{i \in \mathbf{Z}} \mathrm{H}_{i}\left(\mathrm{M}_{\bullet}\right)[i] \otimes_{\mathrm{A}}^{\mathbf{L}} \mathrm{N}=\bigoplus_{i \in \mathbf{Z}}\left(\mathrm{H}_{i}\left(\mathrm{M}_{\bullet}\right) \otimes_{\mathrm{A}}^{\mathbf{L}} \mathrm{N}\right)[i]
$$

for any A-module N , and so $\mathrm{H}_{n}\left(\mathrm{H}_{\bullet} \otimes_{\mathrm{A}}^{\mathrm{L}} \mathrm{N}\right)$ will contain $\mathrm{H}_{n}\left(\mathrm{H}_{0}\left(\mathrm{M}_{\bullet}\right) \otimes_{\mathrm{A}}^{\mathrm{L}} \mathrm{N}\right) \neq 0$ for all $n \geqslant 0$.
3. (i) Let A be a commutative ring and $\mathrm{I} \subset \mathrm{A}$ an ideal contained in the Jacobson radical of A . Show that the homomorphism $\mathcal{M}(\mathrm{A}) \rightarrow \mathcal{M}(\mathrm{A} / \mathrm{I})$, given by extension of scalars along the quotient map $\phi: \mathrm{A} \rightarrow \mathrm{A} / \mathrm{I}$, is injective. Recall that $\mathcal{M}(\mathrm{A})$ denotes the monoid of isomorphism classes of f.g. projective A-modules. (Hint: Nakayama.)
(ii) Suppose that I is a nil ideal, i.e., that every element $x \in \mathrm{I}$ is nilpotent. Let $\phi: A \rightarrow A / I$ be the quotient map. Show that the homomorphism $\phi^{*}: K_{0}(A) \rightarrow$ $\mathrm{K}_{0}(\mathrm{~A} / \mathrm{I})$ is invertible. (Hint: use the fact that idempotents lift along nil ideals in associative rings, and apply this to the algebra of endomorphisms of $\mathrm{A}^{\oplus n}$.)
(i) Let M and N be f.g. projective A-modules and suppose there exists a morphism $\bar{\phi}: \mathrm{M} / \mathrm{IM} \rightarrow \mathrm{N} / \mathrm{IM}$ of A/I-modules. Since M is projective, there exists a morphism $\phi: \mathrm{M} \rightarrow \mathrm{N}$ such that the diagram

commutes. If $\bar{\phi}$ is surjective, then so is ϕ. Equivalently, $\mathrm{Q}=\operatorname{Coker}(\phi)$ is zero iff $\mathrm{Q} / \mathrm{IQ}=0$; this follows from Nakayama since I is contained in the Jacobson radical and since Q is finitely generated. Now suppose that $\bar{\phi}$ is also injective. Then since M is projective and ϕ is surjective, it admits a section $\sigma: \mathrm{N} \rightarrow \mathrm{M}$ and M splits as a direct sum $\mathrm{K} \oplus \mathrm{N}$, where $\mathrm{K}=\operatorname{Ker}(\phi)$. Now we have $\mathrm{K} / \mathrm{IK}=0$ since $\bar{\phi}$ induces an isomorphism $\mathrm{M} / \mathrm{IM} \simeq \mathrm{N} / \mathrm{IN}$ by assumption. Thus by Nakayama again (since K is also f.g.), we conclude that $\mathrm{K}=0$. In particular, ϕ is an isomorphism. This discussion shows that every A / I-module isomorphism $\mathrm{M} / \mathrm{IM} \simeq \mathrm{N} / \mathrm{IM}$ lifts to
an A-module isomorphism $\mathrm{M} \simeq \mathrm{N}$. In particular, the map $\mathcal{M}(\mathrm{A}) \rightarrow \mathcal{M}(\mathrm{A} / \mathrm{I})$ is injective.
(ii) First of all, note that every nil ideal is contained in the Jacobson radical.

For injectivity, let $x \in \mathrm{~K}_{0}(\mathrm{~A})$ such that $\phi^{*}(x)=0$ in $\mathrm{K}_{0}(\mathrm{~A} / \mathrm{I})$. By the Lemma in §3.1, we can write $x=[\mathrm{M}]-\left[\mathrm{A}^{\oplus n}\right]$, where $\mathrm{M} \in \operatorname{Mod}_{A}^{\text {fgroj }}$ and $n \geqslant 0$. Then we have $[\mathrm{M} / \mathrm{IM}]=\left[(\mathrm{A} / \mathrm{I})^{\oplus n}\right] \in \mathrm{K}_{0}(\mathrm{~A} / \mathrm{I})$ so by part (ii) of the same Lemma, we deduce that $\mathrm{M} / \mathrm{IM} \oplus(\mathrm{A} / \mathrm{I})^{\oplus k} \simeq(\mathrm{~A} / \mathrm{I})^{\oplus n+k}$ for some $k \geqslant 0$. Then by claim (i) above, it follows that $\mathrm{M} \oplus \mathrm{A}^{\oplus k} \simeq \mathrm{~A}^{\oplus n+k}$ as A-modules, and in particular $[\mathrm{M}]=\left[\mathrm{A}^{\oplus n}\right]$ in $\mathrm{K}_{0}(\mathrm{~A})$, i.e., $x=0$.
For surjectivity, it will suffice to show that every f.g. projective A/I-module N lifts to a f.g. projective A-module M (for which $M \otimes_{A} A / I=N$). Since N is a direct summand of a f.g. free module $(\mathrm{A} / \mathrm{I})^{\oplus n}$, there is a corresponding projector (= idempotent endomorphism)

$$
\bar{e}:(\mathrm{A} / \mathrm{I})^{\oplus n} \rightarrow \mathrm{~N} \hookrightarrow(\mathrm{~A} / \mathrm{I})^{\oplus n}
$$

whose image is N . Applying the hint to the homomorphism of matrix rings

$$
\operatorname{End}_{\mathrm{A}}\left(\mathrm{~A}^{\oplus n}\right) \rightarrow \operatorname{End}_{\mathrm{A} / \mathrm{I}}\left((\mathrm{~A} / \mathrm{I})^{\oplus n}\right)
$$

(which is the quotient by a nil ideal), we deduce that there exists an idempotent endomorphism $e: \mathrm{A}^{\oplus n} \rightarrow \mathrm{~A}^{\oplus n}$ lifting \bar{e}. The image of e is a f.g. projective A-module M lifting N .
For a proof of the claim in the hint, see e.g. [Bass, Algebraic K-theory, Chap. III, Prop. 2.10].
4. Let $\phi: \mathrm{A} \rightarrow \mathrm{B}$ be a ring homomorphism which exhibits B as a f.g. free A-module of rank d. Then we have $[\mathrm{B}]=d .[\mathrm{A}]=d$ in $\mathrm{K}_{0}(\mathrm{~A})$. Show that the composites

$$
\begin{aligned}
& \mathrm{K}_{0}(\mathrm{~A}) \xrightarrow{\phi^{*}} \mathrm{~K}_{0}(\mathrm{~B}) \xrightarrow{\phi_{*}} \mathrm{~K}_{0}(\mathrm{~A}) \\
& \mathrm{K}_{0}(\mathrm{~B}) \xrightarrow{\phi_{*}} \mathrm{~K}_{0}(\mathrm{~A}) \xrightarrow{\phi^{*}} \mathrm{~K}_{0}(\mathrm{~B})
\end{aligned}
$$

are both given by multiplication by d.
By assumption, B is flat as an A-module. In particular, the square

is Tor-independent. Thus by the base change formula ($\S 6.2$) we have

$$
\phi^{*} \phi_{*}=\beta_{*} \alpha^{*}: \mathrm{K}_{0}(\mathrm{~B}) \rightarrow \mathrm{K}_{0}(\mathrm{~B})
$$

Take $x=[\mathrm{N}]-\left[\mathrm{B}^{\oplus n}\right] \in \mathrm{K}_{0}(\mathrm{~B}), \mathrm{N} \in \operatorname{Mod}_{\mathrm{B}}^{\mathrm{fgproj}}$ and $n \geqslant 0$ (recall every x can be written in this form, by $\S 3.1$). We have

$$
\begin{aligned}
\beta_{*} \alpha^{*}(x) & =\beta_{*}\left(\left[\mathrm{~N} \otimes_{\mathrm{B}} \mathrm{~B} \otimes_{\mathrm{A}} \mathrm{~B}\right]-\left[\mathrm{B}^{\oplus n} \otimes_{\mathrm{B}} \mathrm{~B} \otimes_{\mathrm{A}} \mathrm{~B}\right]\right) \\
& =\left[\mathrm{N} \otimes_{\mathrm{B}} \mathrm{~B}\right] \cup[\mathrm{B}]-\left[\mathrm{B}^{\oplus n} \otimes_{\mathrm{B}} \mathrm{~B}\right] \cup[\mathrm{B}] \\
& =x \cup d
\end{aligned}
$$

as desired.
For the composite $\phi_{*} \phi^{*}$ we first note

$$
\phi_{*} \phi^{*}[\mathrm{~A}]=\phi_{*}[\mathrm{~B}]=\left[\mathrm{B}_{[\mathrm{A}]}\right]=d .
$$

Then by the projection formula,

$$
d \cup x=\left(\phi_{*} \phi^{*}[\mathrm{~A}]\right) \cup x=\phi_{*}\left(\phi^{*}[\mathrm{~A}] \cup \phi^{*}(x)\right)=\phi_{*} \phi^{*}([\mathrm{~A}] \cup x)=\phi_{*} \phi^{*}(x) .
$$

(Recall that ϕ^{*} is a ring homomorphism and that $[\mathrm{A}]$ is the unit of the ring structure on $\mathrm{K}_{0}(\mathrm{~A})$.)

