Exercise sheet 6

- Let A be a noetherian ring. Show that G₀(A) is generated by classes [A/p] where p is a prime ideal.
- **2.** Let A be a commutative ring. A chain complex M_{\bullet} of A-modules is called *formal* if it is quasi-isomorphic to

$$\bigoplus_{i \in \mathbf{Z}} \mathbf{H}_i(\mathbf{M}_{\bullet})[i],$$

the complex with $H_i(M_{\bullet})$ in degree *i* and all differentials zero.

- (i) Let k be a field. Show that every chain complex of k-modules is formal.
- (ii) Give an example of a non-formal complex over a commutative ring A.
- **3.** (i) Let A be a commutative ring and $I \subset A$ an ideal contained in the Jacobson radical of A. Show that the homomorphism $\mathcal{M}(A) \to \mathcal{M}(A/I)$, given by extension of scalars along the quotient map $\phi : A \to A/I$, is injective. Recall that $\mathcal{M}(A)$ denotes the monoid of isomorphism classes of f.g. projective A-modules. (Hint: Nakayama.)

(ii) Suppose that I is a nil ideal, i.e., that every element $x \in I$ is nilpotent. Let $\phi : A \to A/I$ be the quotient map. Show that the homomorphism $\phi^* : K_0(A) \to K_0(A/I)$ is invertible. (Hint: use the fact that idempotents lift along quotients by nil ideals in associative rings, and apply this to the ring of endomorphisms of $A^{\oplus n}$.)

- 4. Let $\phi : A \to B$ be a ring homomorphism which exhibits B as a f.g. free A-module of rank d. Then we have [B] = d.[A] = d in $K_0(A)$. Show that the composites
 - $K_0(A) \xrightarrow{\phi^*} K_0(B) \xrightarrow{\phi_*} K_0(A)$ $K_0(B) \xrightarrow{\phi_*} K_0(A) \xrightarrow{\phi^*} K_0(B)$

are both given by multiplication by d.