Exercise sheet 8

1. Let k be a field and $\mathrm{A}=k\left[\mathrm{~T}_{1}, \ldots, \mathrm{~T}_{n}\right]$ the polynomial algebra on n generators.
(i) If k is algebraically closed, show that the closed points in $|\operatorname{Spec}(\mathrm{A})|$ are in bijection with tuples $\left(x_{1}, \ldots, x_{n}\right) \in k^{n}$.
(ii) In general, let \bar{k} be an algebraic closure of k and consider the automorphism group $\mathrm{G}=\operatorname{Aut}(\bar{k} / k)$. Show that there is a canonical action of G on the set of closed points of $\left|\operatorname{Spec}\left(\bar{k}\left[\mathrm{~T}_{1}, \ldots, \mathrm{~T}_{n}\right]\right)\right|$.
(iii) Show that the closed points in $|\operatorname{Spec}(\mathrm{A})|$ are in bijection with the G-orbits of the closed points of $\left|\operatorname{Spec}\left(\bar{k}\left[\mathrm{~T}_{1}, \ldots, \mathrm{~T}_{n}\right]\right)\right|$.
This follows from the Nullstellensatz. See [Bourbaki, Commutative algebra, Chap. V, $\S 3.3$, Prop. 2] for the strong version that is useful here.
2. Let A be a noetherian local ring. Recall that $|\operatorname{Spec}(A)|$ has a unique closed point x.
(i) Show that $\mathrm{M} \in \operatorname{Mod}_{\mathrm{A}}^{\mathrm{fg}}$ is supported on $\mathrm{V}(\mathfrak{m}) \simeq\{x\}$ iff it is of finite length.
(ii) Show that the dévissage isomorphism $G_{0}^{\{x\}}(A) \simeq Z$ sends $[M] \mapsto \ell_{A}(M)$, where $\ell_{\mathrm{A}}(\mathrm{M})$ denotes the length of M .
(iii) If A is regular, show that the intersection multiplicity is computed by the formula

$$
\chi_{\mathrm{A}}(\mathrm{M}, \mathrm{~N})=\sum_{i}(-1)^{i} \ell_{\mathrm{A}}\left(\operatorname{Tor}_{i}^{\mathrm{A}}(\mathrm{M}, \mathrm{~N})\right)
$$

where M and N are A-modules with $\operatorname{Supp}_{\mathrm{A}}(\mathrm{M}) \cap \operatorname{Supp}_{\mathrm{A}}(\mathrm{N})=\{x\}$ (x being the closed point of $|\operatorname{Spec}(\mathrm{A})|$).
(i) This follows from Sheet 2, Exercise 4.
(ii) Let M be a f.g. A-module which is supported on $\mathrm{V}(\mathfrak{m})$. To describe the image of $[M]$ through the dévissage isomorphism $G_{0}^{\{x\}}(A) \simeq G_{0}(\kappa(x))$, we are free to choose any finite filtration $\left(\mathrm{M}_{i}\right)_{i}$ of M , where the successive quotients are $\mathrm{A} / \mathfrak{m}$-modules, and take the sum

$$
\sum_{i}\left[\mathrm{M}_{i} / \mathrm{M}_{i-1}\right] .
$$

Since M is of finite length by (i), say, $n:=\ell_{A}(M)$, it admits a composition series: that is, we can choose such a filtration of length n where $\mathrm{M}_{i} / \mathrm{M}_{i-1}$ are simple modules, hence each isomorphic to $\mathrm{A} / \mathfrak{m}=\kappa(x)$ (see Lemma below). Thus $[\mathrm{M}]$ corresponds under dévissage to $n \cdot[\kappa(x)] \in \mathrm{G}_{0}(\kappa(x))$. The isomorphism $\mathrm{G}_{0}(\kappa(x)) \simeq \mathbf{Z}$ sends the class of a $\kappa(x)$-vector space to its dimension, hence $[\mathrm{M}]$ is sent to $n \in \mathbf{Z}$.

Lemma 1. Let A be a ring and N an A-module. Then N is simple iff it is isomorphic to $\mathrm{A} / \mathfrak{m}$ for some maximal ideal \mathfrak{m}.

Proof. Recall that N is simple if $\ell_{\mathrm{A}}(\mathrm{N})=1$, i.e., if it admits exactly two submodules, 0 and N . Since N is nonzero we can choose a nonzero element $n \in \mathrm{~N}$. The multiplication map $n: \mathrm{A} \rightarrow \mathrm{N}$ has image a submodule $n \mathrm{~N} \subseteq \mathrm{~N}$. We cannot have $n \mathrm{~N}=0$ since at least $n=n \cdot 1 \in n \mathrm{~N}$. Thus $n \mathrm{~N}=\mathrm{N}$. In other words, N is generated by the element n, and $\mathrm{N} \simeq \mathrm{A} / \mathrm{I}$ where $\mathrm{I}=\operatorname{Ann}(n)$.
It remains to show that I is a maximal ideal. Since I is a proper ideal (as $\mathrm{N} \neq 0$), we at least have $I \subseteq \mathfrak{m}$ for some maximal ideal \mathfrak{m}. Since ideals of A containing I are in bijection with ideals of A / I (i.e., submodules of N), there are exactly two of them, namely I and the unit ideal. The claim follows.
(iii) Given point (ii), this follows immediately from the construction of χ_{A}.
3. Let k be an algebraically closed field and $\mathrm{A}=k[\mathrm{~T}, \mathrm{U}]$. Let I and J be prime ideals of A defining distinct integral closed subsets $\mathrm{Y}=\mathrm{V}(\mathrm{I})$ and $\mathrm{Z}=\mathrm{V}(\mathrm{J})$ of codimension 1. Let p be a closed point of $|\operatorname{Spec}(\mathrm{A})|$ which lies in the intersection $\mathrm{Y} \cap \mathrm{Z}$, and let \mathfrak{m} be the corresponding maximal ideal of A. Show that

$$
\chi_{A_{\mathfrak{m}}}\left(\mathrm{A}_{\mathfrak{m}} / \mathrm{IA}_{\mathfrak{m}}, \mathrm{A}_{\mathfrak{m}} / \mathrm{JA}_{\mathfrak{m}}\right)=\operatorname{dim}_{k}\left(\mathrm{~A}_{\mathfrak{m}} /(\mathrm{I}+\mathrm{J}) \mathrm{A}_{\mathfrak{m}}\right) .
$$

The following commutative algebra fact shows that I and J are principal ideals. (This condition actually characterizes factoriality of noetherian integral domains.)

Lemma 2. Let A be a factorial ring. Then for every integral subset $\mathrm{V}(\mathfrak{p}) \subset$ $|\operatorname{Spec}(\mathrm{A})|$ of codimension 1, the prime ideal \mathfrak{p} is principal.

Proof. Let \mathfrak{p} be a prime ideal such that $\mathrm{V}(\mathfrak{p})$ is of codimension 1. Given a nonzero $f \in \mathfrak{p}$, choose a factorization $f=g_{1} \cdots g_{n}$ with the g_{i} irreducible (hence prime). Since \mathfrak{p} is prime, we have $g_{i} \in \mathfrak{p}$ for some i. But then we have an inclusion of prime ideals $\left\langle g_{i}\right\rangle \subseteq \mathfrak{p}$, hence of integral subsets $\mathrm{V}(\mathfrak{p}) \subseteq \mathrm{V}\left(\left\langle g_{i}\right\rangle\right)$. But since $\mathrm{V}(\mathfrak{p})$ is of codimension 1, it follows that $\mathfrak{p}=\left\langle g_{i}\right\rangle$.

Let f be a generator of I . By assumption $\mathrm{V}(\mathrm{I})$ and $\mathrm{V}(\mathrm{J})$ are distinct, in particular $\mathrm{V}(\mathrm{J}) \nsubseteq \mathrm{V}(\mathrm{I})$ and therefore $f \notin \mathrm{~J}$. Thus f is a non-zero-divisor both in A and A / J (both integral domains). Therefore

$$
\mathrm{A} / \mathrm{I} \otimes_{\mathrm{A}}^{\mathrm{L}} \mathrm{~A} / \mathrm{J} \simeq \operatorname{Kosz}_{\mathrm{A}}(f) \otimes_{\mathrm{A}} \mathrm{~A} / \mathrm{J} \simeq[\mathrm{~A} / \mathrm{J} \xrightarrow{f} \mathrm{~A} / \mathrm{J}]
$$

is acyclic in positive degrees (where \simeq means quasi-isomorphism). The same holds after localizing at \mathfrak{m}, i.e.,

$$
\mathrm{A}_{\mathfrak{m}} / \mathrm{IA}_{\mathfrak{m}} \otimes_{\mathrm{A}_{\mathfrak{m}}}^{\mathrm{L}} \mathrm{~A}_{\mathfrak{m}} / \mathrm{JA}_{\mathfrak{m}} \simeq\left[\mathrm{A}_{\mathfrak{m}} / \mathrm{JA}_{\mathfrak{m}} \xrightarrow{f} \mathrm{~A}_{\mathfrak{m}} / \mathrm{JA}_{\mathfrak{m}}\right]
$$

is acyclic in positive degrees, since $(-)_{\mathfrak{m}}$ is an exact functor. Thus we get:

$$
\begin{aligned}
\chi_{A_{\mathfrak{m}}}\left(\mathrm{A}_{\mathfrak{m}} / \mathrm{IA}_{\mathfrak{m}}, \mathrm{A}_{\mathfrak{m}} / J \mathrm{~A}_{\mathfrak{m}}\right) & =\sum_{i}(-1)^{i} \ell_{\mathrm{A}_{\mathfrak{m}}}\left(\operatorname{Tor}_{i}^{\mathrm{A}_{\mathfrak{m}}}\left(\mathrm{A}_{\mathfrak{m}} / \mathrm{IA}_{\mathfrak{m}}, \mathrm{A}_{\mathfrak{m}} / \mathrm{JA}_{\mathfrak{m}}\right)\right) \\
& =\ell_{A_{\mathfrak{m}}}\left(\mathrm{A}_{\mathfrak{m}} /(\mathrm{I}+\mathrm{J}) \mathrm{A}_{\mathfrak{m}}\right) \\
& =\operatorname{dim}_{k}\left(\mathrm{~A}_{\mathfrak{m}} /(\mathrm{I}+\mathrm{J}) \mathrm{A}_{\mathfrak{m}}\right)
\end{aligned}
$$

as desired. (For the last equality, note that we can view $A_{\mathfrak{m}} /(I+J) A_{\mathfrak{m}}$ as a module over k, and its length doesn't change when we do so.) Note the algebraic closedness assumption on k was irrelevant.
4. Let k be an algebraically closed field and $\mathrm{A}=k\left[\mathrm{~T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}, \mathrm{~T}_{4}\right]$. Consider the ideals

$$
\begin{aligned}
& \mathrm{I}=\left\langle\mathrm{T}_{1}, \mathrm{~T}_{2}\right\rangle \cap\left\langle\mathrm{T}_{3}, \mathrm{~T}_{4}\right\rangle=\left\langle\mathrm{T}_{1} \mathrm{~T}_{3}, \mathrm{~T}_{1} \mathrm{~T}_{4}, \mathrm{~T}_{2} \mathrm{~T}_{3}, \mathrm{~T}_{2} \mathrm{~T}_{4}\right\rangle \\
& \mathrm{J}=\left\langle\mathrm{T}_{1}-\mathrm{T}_{3}, \mathrm{~T}_{2}-\mathrm{T}_{4}\right\rangle
\end{aligned}
$$

which define closed subsets $Y=V(I)$ and $Z=V(J)$ of $X=|\operatorname{Spec}(A)|$.
(i) Show that Y has two irreducible components, each of codimension 2 in X .
(ii) Show that each component of Y intersects Z at exactly one closed point p in X.
(iii) Let \mathfrak{m} be the maximal ideal of A corresponding to p. Compute the integers

$$
\ell_{\mathrm{A}}(\mathrm{~A} /(\mathrm{I}+\mathrm{J})), \quad \ell_{\mathrm{A}_{\mathfrak{m}}}\left(\mathrm{A}_{\mathfrak{m}} /(\mathrm{I}+\mathrm{J}) \mathrm{A}_{\mathfrak{m}}\right)
$$

(iv) Compute the intersection number

$$
\chi_{A_{\mathfrak{m}}}\left(\mathrm{A}_{\mathfrak{m}} / \mathrm{IA}_{\mathfrak{m}}, \mathrm{A}_{\mathfrak{m}} / \mathrm{JA}_{\mathfrak{m}}\right)
$$

(i) Let $I_{1}=\left\langle T_{1}, T_{2}\right\rangle$ and $I_{2}=\left\langle T_{3}, T_{4}\right\rangle$. Since A / I_{1} and A / I_{2} are integral domains, these are prime ideals of A which define integral closed subsets $\mathrm{Y}_{1}=\mathrm{V}\left(\mathrm{I}_{1}\right)$ and $\mathrm{Y}_{2}=\mathrm{V}\left(\mathrm{I}_{2}\right)$ of X . As $\mathrm{Y}=\mathrm{V}(\mathrm{I})=\mathrm{V}\left(\mathrm{I}_{1} \cap \mathrm{I}_{2}\right)=\mathrm{Y}_{1} \cup \mathrm{Y}_{2}$, it follows that Y_{1} and Y_{2} are the irreducible components of Y . It is clear that $\mathrm{Y}_{1}=\mathrm{V}\left(\mathrm{T}_{1}, \mathrm{~T}_{2}\right) \subsetneq$ $\mathrm{V}\left(\mathrm{T}_{1}\right) \subsetneq \mathrm{V}(0)=\mathrm{X}$ is a maximal chain of integral closed subsets of X , so Y_{1} is of codimension 2 and similarly for Y_{2}.
(ii) We have $\mathrm{Y}_{1} \cap \mathrm{Z}=\mathrm{V}\left(\left\langle\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{1}-\mathrm{T}_{3}, \mathrm{~T}_{2}-\mathrm{T}_{4}\right\rangle\right)=\mathrm{V}\left(\left\langle\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}, \mathrm{~T}_{4}\right\rangle\right)$, which consists of the single closed point p corresponding to the maximal ideal $\mathfrak{m}=$ $\mathfrak{p}(p)=\left\langle\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}, \mathrm{~T}_{4}\right\rangle$. Same for $\mathrm{Y}_{2} \cap \mathrm{Z}$.
(iii) We have

$$
\mathrm{A} /(\mathrm{I}+\mathrm{J}) \simeq k\left[\mathrm{~T}_{1}, \mathrm{~T}_{2}\right] /\left\langle\mathrm{T}_{1}^{2}, \mathrm{~T}_{1} \mathrm{~T}_{2}, \mathrm{~T}_{2}^{2}\right\rangle
$$

which is a 3 -dimensional vector space over k with basis $\left\{1, \mathrm{~T}_{1}, \mathrm{~T}_{2}\right\}$. Thus

$$
\ell_{\mathrm{A}}(\mathrm{~A} /(\mathrm{I}+\mathrm{J}))=\operatorname{dim}_{k}\left(k\left[\mathrm{~T}_{1}, \mathrm{~T}_{2}\right] /\left\langle\mathrm{T}_{1}^{2}, \mathrm{~T}_{1} \mathrm{~T}_{2}, \mathrm{~T}_{2}^{2}\right\rangle\right)=3,
$$

and the same after localizing.
(iv) For any two ideals I_{1}, I_{2} in a ring A, we have a short exact sequence

$$
0 \rightarrow \mathrm{~A} /\left(\mathrm{I}_{1} \cap \mathrm{I}_{2}\right) \rightarrow \mathrm{A} / \mathrm{I}_{1} \oplus \mathrm{~A} / \mathrm{I}_{2} \rightarrow \mathrm{~A} /\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right) \rightarrow 0
$$

from which we derive the formula

$$
\left[\mathrm{A} /\left(\mathrm{I}_{1} \cap \mathrm{I}_{2}\right)\right]=\left[\mathrm{A} / \mathrm{I}_{1}\right]+\left[\mathrm{A} / \mathrm{I}_{2}\right]-\left[\mathrm{A} /\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right)\right]
$$

in $G_{0}(A)$ or even in $G_{0}^{V\left(I_{1}\right) \cup V\left(I_{2}\right)}(A) \simeq G_{0}\left(A /\left(I_{1} \cap I_{2}\right)\right)$.
In our case, with $I=I_{1} \cap I_{2}$, we get

$$
[\mathrm{A} / \mathrm{I}]=\left[\mathrm{A} / \mathrm{I}_{1}\right]+\left[\mathrm{A} / \mathrm{I}_{2}\right]-\left[\mathrm{A} /\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right)\right]
$$

in $G_{0}(A / I)$. The same holds after localizing at the ideal \mathfrak{m}. We have then

$$
\begin{aligned}
& \chi_{A_{\mathfrak{m}}}\left(A_{\mathfrak{m}} / I A_{\mathfrak{m}}, A_{\mathfrak{m}} / J A_{\mathfrak{m}}\right)=\chi_{A_{\mathfrak{m}}}\left(A_{\mathfrak{m}} / I_{1} A_{\mathfrak{m}}, A_{\mathfrak{m}} / J A_{\mathfrak{m}}\right)+\chi_{A_{\mathfrak{m}}}\left(A_{\mathfrak{m}} / I_{2} A_{\mathfrak{m}}, A_{\mathfrak{m}} / J A_{\mathfrak{m}}\right) \\
&-\chi_{A_{\mathfrak{m}}}\left(A_{\mathfrak{m}} /\left(I_{1}+I_{2}\right) A_{\mathfrak{m}}, A_{\mathfrak{m}} / J A_{\mathfrak{m}}\right)
\end{aligned}
$$

since χ factors through $G_{0}(A / I)$ by definition and is linear.
To compute the last term (we ignore the localization at \mathfrak{m}, which has no effect on the computation), use the Koszul complex on the regular sequence $\left(\mathrm{T}_{1}-\mathrm{T}_{3}, \mathrm{~T}_{2}-\mathrm{T}_{4}\right)$ to resolve A / J; after tensoring with $\mathrm{A} /\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right) \simeq k$ the differentials vanish and we get the complex

$$
k \otimes_{\mathrm{A}}^{\mathrm{L}} \mathrm{~A} / \mathrm{J} \simeq[k \xrightarrow{0} k] \otimes_{k}[k \xrightarrow{0} k] \simeq[k \xrightarrow{0} k \oplus k \xrightarrow{0} k] .
$$

The alternating sum of the dimensions of the terms is $1-2+1=0$.
To compute the term $\chi_{\mathrm{A}_{\mathfrak{m}}}\left(\mathrm{A}_{\mathfrak{m}} / \mathrm{I}_{1} \mathrm{~A}_{\mathfrak{m}}, \mathrm{A}_{\mathfrak{m}} / \mathrm{JA}_{\mathfrak{m}}\right)$ (again we'll ignore the localization) we can use the same resolution of A / J to get

$$
\begin{aligned}
\mathrm{A} / \mathrm{I}_{1} \otimes_{\mathrm{A}}^{\mathrm{L}} \mathrm{~A} / \mathrm{J} & \simeq\left[\mathrm{~A} /\left\langle\mathrm{T}_{1}, \mathrm{~T}_{2}\right\rangle \xrightarrow{-\mathrm{T}_{3}} \mathrm{~A} /\left\langle\mathrm{T}_{1}, \mathrm{~T}_{2}\right\rangle\right] \otimes_{\mathrm{A}}\left[\mathrm{~A} /\left\langle\mathrm{T}_{1}, \mathrm{~T}_{2}\right\rangle \xrightarrow{-\mathrm{T}_{4}} \mathrm{~A} /\left\langle\mathrm{T}_{1}, \mathrm{~T}_{2}\right\rangle\right] \\
& \simeq \mathrm{Kosz}_{k\left[\mathrm{~T}_{3}, \mathrm{~T}_{4}\right]}\left(-\mathrm{T}_{3},-\mathrm{T}_{4}\right) \\
& \simeq k
\end{aligned}
$$

where the last quasi-isomorphism is because $\left(-\mathrm{T}_{3},-\mathrm{T}_{4}\right)$ is a regular sequence in $k\left[\mathrm{~T}_{3}, \mathrm{~T}_{4}\right]$. Thus this term has a contribution

$$
\chi_{A_{\mathfrak{m}}}\left(\mathrm{A}_{\mathfrak{m}} / \mathrm{I}_{1} \mathrm{~A}_{\mathfrak{m}}, \mathrm{A}_{\mathfrak{m}} / \mathrm{JA}_{\mathfrak{m}}\right)=1
$$

and similarly

$$
\chi_{A_{\mathfrak{m}}}\left(\mathrm{A}_{\mathfrak{m}} / \mathrm{I}_{2} \mathrm{~A}_{\mathfrak{m}}, \mathrm{A}_{\mathfrak{m}} / \mathrm{JA}_{\mathfrak{m}}\right)=1
$$

We end up with

$$
\chi_{\mathrm{A}_{\mathfrak{m}}}\left(\mathrm{A}_{\mathfrak{m}} / \mathrm{IA}_{\mathfrak{m}}, \mathrm{A}_{\mathfrak{m}} / \mathrm{JA}_{\mathfrak{m}}\right)=1+1-0=2
$$

