
Exercise sheet 8

1. Let k be a field and A = k[T1, . . . ,Tn] the polynomial algebra on n generators.

(i) If k is algebraically closed, show that the closed points in
∣∣Spec(A)

∣∣ are in
bijection with tuples (x1, . . . , xn) ∈ kn.

(ii) In general, let k be an algebraic closure of k and consider the automorphism
group G = Aut(k/k). Show that there is a canonical action of G on the set of
closed points of

∣∣Spec(k[T1, . . . ,Tn])
∣∣.

(iii) Show that the closed points in
∣∣Spec(A)

∣∣ are in bijection with the G-orbits of

the closed points of
∣∣Spec(k[T1, . . . ,Tn])

∣∣.
This follows from the Nullstellensatz. See [Bourbaki, Commutative algebra,
Chap. V, §3.3, Prop. 2] for the strong version that is useful here.

2. Let A be a noetherian local ring. Recall that
∣∣Spec(A)

∣∣ has a unique closed point
x.

(i) Show that M ∈ Modfg
A is supported on V(m) ' {x} iff it is of finite length.

(ii) Show that the dévissage isomorphism G
{x}
0 (A) ' Z sends [M] 7→ `A(M), where

`A(M) denotes the length of M.

(iii) If A is regular, show that the intersection multiplicity is computed by the
formula

χA(M,N) =
∑
i

(−1)i `A(TorAi (M,N))

where M and N are A-modules with SuppA(M) ∩ SuppA(N) = {x} (x being the
closed point of

∣∣Spec(A)
∣∣).

(i) This follows from Sheet 2, Exercise 4.

(ii) Let M be a f.g. A-module which is supported on V(m). To describe the

image of [M] through the dévissage isomorphism G
{x}
0 (A) ' G0(κ(x)), we are

free to choose any finite filtration (Mi)i of M, where the successive quotients are
A/m-modules, and take the sum ∑

i

[Mi/Mi−1].

Since M is of finite length by (i), say, n := `A(M), it admits a composition
series: that is, we can choose such a filtration of length n where Mi/Mi−1 are
simple modules, hence each isomorphic to A/m = κ(x) (see Lemma below). Thus
[M] corresponds under dévissage to n · [κ(x)] ∈ G0(κ(x)). The isomorphism
G0(κ(x)) ' Z sends the class of a κ(x)-vector space to its dimension, hence [M] is
sent to n ∈ Z.
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Lemma 1. Let A be a ring and N an A-module. Then N is simple iff it is
isomorphic to A/m for some maximal ideal m.

Proof. Recall that N is simple if `A(N) = 1, i.e., if it admits exactly two submodules,
0 and N. Since N is nonzero we can choose a nonzero element n ∈ N. The
multiplication map n : A → N has image a submodule nN ⊆ N. We cannot
have nN = 0 since at least n = n · 1 ∈ nN. Thus nN = N. In other words, N is
generated by the element n, and N ' A/I where I = Ann(n).

It remains to show that I is a maximal ideal. Since I is a proper ideal (as N 6= 0),
we at least have I ⊆ m for some maximal ideal m. Since ideals of A containing I
are in bijection with ideals of A/I (i.e., submodules of N), there are exactly two
of them, namely I and the unit ideal. The claim follows.

(iii) Given point (ii), this follows immediately from the construction of χA. �

3. Let k be an algebraically closed field and A = k[T,U]. Let I and J be prime
ideals of A defining distinct integral closed subsets Y = V(I) and Z = V(J) of
codimension 1. Let p be a closed point of

∣∣Spec(A)
∣∣ which lies in the intersection

Y ∩ Z, and let m be the corresponding maximal ideal of A. Show that

χAm(Am/IAm,Am/JAm) = dimk(Am/(I + J)Am).

The following commutative algebra fact shows that I and J are principal ideals.
(This condition actually characterizes factoriality of noetherian integral domains.)

Lemma 2. Let A be a factorial ring. Then for every integral subset V(p) ⊂∣∣Spec(A)
∣∣ of codimension 1, the prime ideal p is principal.

Proof. Let p be a prime ideal such that V(p) is of codimension 1. Given a nonzero
f ∈ p, choose a factorization f = g1 · · · gn with the gi irreducible (hence prime).
Since p is prime, we have gi ∈ p for some i. But then we have an inclusion of
prime ideals 〈gi〉 ⊆ p, hence of integral subsets V(p) ⊆ V(〈gi〉). But since V(p) is
of codimension 1, it follows that p = 〈gi〉. �

Let f be a generator of I. By assumption V(I) and V(J) are distinct, in particular
V(J) 6⊆ V(I) and therefore f 6∈ J. Thus f is a non-zero-divisor both in A and A/J
(both integral domains). Therefore

A/I⊗L
A A/J ' KoszA(f)⊗A A/J '

[
A/J

f−→ A/J
]

is acyclic in positive degrees (where ' means quasi-isomorphism). The same holds
after localizing at m, i.e.,

Am/IAm ⊗L
Am

Am/JAm '
[
Am/JAm

f−→ Am/JAm

]
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is acyclic in positive degrees, since (−)m is an exact functor. Thus we get:

χAm(Am/IAm,Am/JAm) =
∑
i

(−1)i `Am

(
TorAm

i (Am/IAm,Am/JAm)
)

= `Am (Am/(I + J)Am)

= dimk (Am/(I + J)Am)

as desired. (For the last equality, note that we can view Am/(I + J)Am as a
module over k, and its length doesn’t change when we do so.) Note the algebraic
closedness assumption on k was irrelevant.

4. Let k be an algebraically closed field and A = k[T1,T2,T3,T4]. Consider the
ideals

I = 〈T1,T2〉 ∩ 〈T3,T4〉 = 〈T1T3,T1T4,T2T3,T2T4〉
J = 〈T1 − T3,T2 − T4〉,

which define closed subsets Y = V(I) and Z = V(J) of X =
∣∣Spec(A)

∣∣.
(i) Show that Y has two irreducible components, each of codimension 2 in X.

(ii) Show that each component of Y intersects Z at exactly one closed point p in
X.

(iii) Let m be the maximal ideal of A corresponding to p. Compute the integers

`A(A/(I + J)), `Am(Am/(I + J)Am).

(iv) Compute the intersection number

χAm(Am/IAm,Am/JAm).

(i) Let I1 = 〈T1,T2〉 and I2 = 〈T3,T4〉. Since A/I1 and A/I2 are integral domains,
these are prime ideals of A which define integral closed subsets Y1 = V(I1) and
Y2 = V(I2) of X. As Y = V(I) = V(I1 ∩ I2) = Y1 ∪ Y2, it follows that Y1

and Y2 are the irreducible components of Y. It is clear that Y1 = V(T1,T2) (
V(T1) ( V(0) = X is a maximal chain of integral closed subsets of X, so Y1 is of
codimension 2 and similarly for Y2.

(ii) We have Y1 ∩ Z = V(〈T1,T2,T1 − T3,T2 − T4〉) = V(〈T1,T2,T3,T4〉), which
consists of the single closed point p corresponding to the maximal ideal m =
p(p) = 〈T1,T2,T3,T4〉. Same for Y2 ∩ Z.

(iii) We have

A/(I + J) ' k[T1,T2]/〈T2
1,T1T2,T

2
2〉,

which is a 3-dimensional vector space over k with basis {1,T1,T2}. Thus

`A(A/(I + J)) = dimk(k[T1,T2]/〈T2
1,T1T2,T

2
2〉) = 3,

and the same after localizing.
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(iv) For any two ideals I1, I2 in a ring A, we have a short exact sequence

0→ A/(I1 ∩ I2)→ A/I1 ⊕ A/I2 → A/(I1 + I2)→ 0

from which we derive the formula

[A/(I1 ∩ I2)] = [A/I1] + [A/I2]− [A/(I1 + I2)]

in G0(A) or even in G
V(I1)∪V(I2)
0 (A) ' G0(A/(I1 ∩ I2)).

In our case, with I = I1 ∩ I2, we get

[A/I] = [A/I1] + [A/I2]− [A/(I1 + I2)]

in G0(A/I). The same holds after localizing at the ideal m. We have then

χAm(Am/IAm,Am/JAm) = χAm(Am/I1Am,Am/JAm) + χAm(Am/I2Am,Am/JAm)

− χAm(Am/(I1 + I2)Am,Am/JAm).

since χ factors through G0(A/I) by definition and is linear.

To compute the last term (we ignore the localization at m, which has no effect on
the computation), use the Koszul complex on the regular sequence (T1−T3,T2−T4)
to resolve A/J; after tensoring with A/(I1 + I2) ' k the differentials vanish and
we get the complex

k ⊗L
A A/J '

[
k

0−→ k
]
⊗k

[
k

0−→ k
]
'
[
k

0−→ k ⊕ k 0−→ k
]
.

The alternating sum of the dimensions of the terms is 1− 2 + 1 = 0.

To compute the term χAm(Am/I1Am,Am/JAm) (again we’ll ignore the localization)
we can use the same resolution of A/J to get

A/I1 ⊗L
A A/J '

[
A/〈T1,T2〉

−T3−−→ A/〈T1,T2〉
]
⊗A

[
A/〈T1,T2〉

−T4−−→ A/〈T1,T2〉
]

' Koszk[T3,T4](−T3,−T4)

' k

where the last quasi-isomorphism is because (−T3,−T4) is a regular sequence in
k[T3,T4]. Thus this term has a contribution

χAm(Am/I1Am,Am/JAm) = 1

and similarly
χAm(Am/I2Am,Am/JAm) = 1.

We end up with

χAm(Am/IAm,Am/JAm) = 1 + 1− 0 = 2.


