Exercise sheet 8

1. Let k be a field and $\mathrm{A}=k\left[\mathrm{~T}_{1}, \ldots, \mathrm{~T}_{n}\right]$ the polynomial algebra on n generators.
(i) If k is algebraically closed, show that the closed points in $|\operatorname{Spec}(\mathrm{A})|$ are in bijection with tuples $\left(x_{1}, \ldots, x_{n}\right) \in k^{n}$.
(ii) In general, let \bar{k} be an algebraic closure of k and consider the automorphism group $\mathrm{G}=\operatorname{Aut}(\bar{k} / k)$. Show that there is a canonical action of G on the set of closed points of $\left|\operatorname{Spec}\left(\bar{k}\left[\mathrm{~T}_{1}, \ldots, \mathrm{~T}_{n}\right]\right)\right|$.
(iii) Show that the closed points in $|\operatorname{Spec}(\mathrm{A})|$ are in bijection with the G-orbits of the closed points of $\left|\operatorname{Spec}\left(\bar{k}\left[\mathrm{~T}_{1}, \ldots, \mathrm{~T}_{n}\right]\right)\right|$.
2. Let A be a noetherian local ring. Recall that $|\operatorname{Spec}(A)|$ has a unique closed point x.
(i) Show that $\mathrm{M} \in \operatorname{Mod}_{\mathrm{A}}^{\mathrm{fg}}$ is supported on $\mathrm{V}(\mathfrak{m}) \simeq\{x\}$ iff it is of finite length.
(ii) Show that the dévissage isomorphism $G_{0}^{\{x\}}(A) \simeq Z$ sends $[M] \mapsto \ell_{A}(M)$, where $\ell_{\mathrm{A}}(\mathrm{M})$ denotes the length of M .
(iii) If A is regular, show that the intersection multiplicity is computed by the formula

$$
\chi_{\mathrm{A}}(\mathrm{M}, \mathrm{~N})=\sum_{i}(-1)^{i} \ell_{\mathrm{A}}\left(\operatorname{Tor}_{i}^{\mathrm{A}}(\mathrm{M}, \mathrm{~N})\right)
$$

where M and N are A-modules with $\operatorname{Supp}_{\mathrm{A}}(\mathrm{M}) \cap \operatorname{Supp}_{\mathrm{A}}(\mathrm{N})=\{x\}$ (x being the closed point of $|\operatorname{Spec}(A)|)$.
3. Let k be an algebraically closed field and $\mathrm{A}=k[\mathrm{~T}, \mathrm{U}]$. Let I and J be prime ideals of A defining distinct integral closed subsets $Y=V(I)$ and $Z=V(J)$ of codimension 1. Let p be a closed point of $|\operatorname{Spec}(\mathrm{A})|$ which lies in the intersection $\mathrm{Y} \cap \mathrm{Z}$, and let \mathfrak{m} be the corresponding maximal ideal of A. Show that

$$
\chi_{\mathrm{A}_{\mathfrak{m}}}\left(\mathrm{A}_{\mathfrak{m}} / \mathrm{IA}_{\mathfrak{m}}, \mathrm{A}_{\mathfrak{m}} / \mathrm{JA}_{\mathfrak{m}}\right)=\operatorname{dim}_{k}\left(\mathrm{~A}_{\mathfrak{m}} /(\mathrm{I}+\mathrm{J}) \mathrm{A}_{\mathfrak{m}}\right) .
$$

4. Let k be an algebraically closed field and $\mathrm{A}=k\left[\mathrm{~T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}, \mathrm{~T}_{4}\right]$. Consider the ideals

$$
\begin{aligned}
& \mathrm{I}=\left\langle\mathrm{T}_{1}, \mathrm{~T}_{2}\right\rangle \cap\left\langle\mathrm{T}_{3}, \mathrm{~T}_{4}\right\rangle=\left\langle\mathrm{T}_{1} \mathrm{~T}_{3}, \mathrm{~T}_{1} \mathrm{~T}_{4}, \mathrm{~T}_{2} \mathrm{~T}_{3}, \mathrm{~T}_{2} \mathrm{~T}_{4}\right\rangle \\
& \mathrm{J}=\left\langle\mathrm{T}_{1}-\mathrm{T}_{3}, \mathrm{~T}_{2}-\mathrm{T}_{4}\right\rangle,
\end{aligned}
$$

which define closed subsets $\mathrm{Y}=\mathrm{V}(\mathrm{I})$ and $\mathrm{Z}=\mathrm{V}(\mathrm{J})$ of $\mathrm{X}=|\operatorname{Spec}(\mathrm{A})|$.
(i) Show that Y has two irreducible components, each of codimension 2 in X .
(ii) Show that each component of Y intersects Z at exactly one closed point p in X.
(iii) Let \mathfrak{m} be the maximal ideal of A corresponding to p. Compute the integers

$$
\ell_{\mathrm{A}}(\mathrm{~A} /(\mathrm{I}+\mathrm{J})), \quad \ell_{\mathrm{A}_{\mathfrak{m}}}\left(\mathrm{A}_{\mathfrak{m}} /(\mathrm{I}+\mathrm{J}) \mathrm{A}_{\mathfrak{m}}\right)
$$

(iv) Compute the intersection number

$$
\chi_{A_{\mathfrak{m}}}\left(\mathrm{A}_{\mathfrak{m}} / \mathrm{IA}_{\mathfrak{m}}, \mathrm{A}_{\mathfrak{m}} / \mathrm{JA}_{\mathfrak{m}}\right)
$$

