Exercise sheet 8

Let k be a field and A = k[T₁,...,T_n] the polynomial algebra on n generators.
(i) If k is algebraically closed, show that the closed points in |Spec(A)| are in bijection with tuples (x₁,...,x_n) ∈ kⁿ.

(ii) In general, let \overline{k} be an algebraic closure of k and consider the automorphism group $G = Aut(\overline{k}/k)$. Show that there is a canonical action of G on the set of closed points of $|Spec(\overline{k}[T_1, \ldots, T_n])|$.

(iii) Show that the closed points in |Spec(A)| are in bijection with the G-orbits of the closed points of $|\text{Spec}(\overline{k}[T_1, \ldots, T_n])|$.

- **2.** Let A be a noetherian local ring. Recall that |Spec(A)| has a unique closed point x.
 - (i) Show that $M \in Mod_A^{fg}$ is supported on $V(\mathfrak{m}) \simeq \{x\}$ iff it is of finite length.
 - (ii) Show that the dévissage isomorphism $G_0^{\{x\}}(A) \simeq \mathbb{Z}$ sends $[M] \mapsto \ell_A(M)$, where $\ell_A(M)$ denotes the length of M.

(iii) If A is regular, show that the intersection multiplicity is computed by the formula

$$\chi_{\mathcal{A}}(\mathcal{M},\mathcal{N}) = \sum_{i} (-1)^{i} \ell_{\mathcal{A}}(\operatorname{Tor}_{i}^{\mathcal{A}}(\mathcal{M},\mathcal{N}))$$

where M and N are A-modules with $\text{Supp}_A(M) \cap \text{Supp}_A(N) = \{x\}$ (x being the closed point of |Spec(A)|).

3. Let k be an algebraically closed field and A = k[T, U]. Let I and J be prime ideals of A defining *distinct* integral closed subsets Y = V(I) and Z = V(J) of codimension 1. Let p be a closed point of |Spec(A)| which lies in the intersection $Y \cap Z$, and let **m** be the corresponding maximal ideal of A. Show that

$$\chi_{\mathcal{A}_{\mathfrak{m}}}(\mathcal{A}_{\mathfrak{m}}/\mathcal{I}\mathcal{A}_{\mathfrak{m}},\mathcal{A}_{\mathfrak{m}}/\mathcal{J}\mathcal{A}_{\mathfrak{m}}) = \dim_{k}(\mathcal{A}_{\mathfrak{m}}/(\mathcal{I}+\mathcal{J})\mathcal{A}_{\mathfrak{m}}).$$

4. Let k be an algebraically closed field and $A = k[T_1, T_2, T_3, T_4]$. Consider the ideals

$$\begin{split} \mathbf{I} &= \langle \mathbf{T}_1, \mathbf{T}_2 \rangle \cap \langle \mathbf{T}_3, \mathbf{T}_4 \rangle = \langle \mathbf{T}_1 \mathbf{T}_3, \mathbf{T}_1 \mathbf{T}_4, \mathbf{T}_2 \mathbf{T}_3, \mathbf{T}_2 \mathbf{T}_4 \rangle \\ \mathbf{J} &= \langle \mathbf{T}_1 - \mathbf{T}_3, \mathbf{T}_2 - \mathbf{T}_4 \rangle, \end{split}$$

which define closed subsets Y = V(I) and Z = V(J) of X = |Spec(A)|.

(i) Show that Y has two irreducible components, each of codimension 2 in X.

(ii) Show that each component of Y intersects Z at exactly one closed point p in X.

(iii) Let \mathfrak{m} be the maximal ideal of A corresponding to p. Compute the integers $\ell_A(A/(I+J)), \qquad \ell_{A_{\mathfrak{m}}}(A_{\mathfrak{m}}/(I+J)A_{\mathfrak{m}}).$

(iv) Compute the intersection number

 $\chi_{A_{\mathfrak{m}}}(A_{\mathfrak{m}}/IA_{\mathfrak{m}},A_{\mathfrak{m}}/JA_{\mathfrak{m}}).$