
II.2K-Theory
and Intersection Theory

Henri Gillet

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

2.2 Chow groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

Dimension and Codimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Dimension Relative to a Base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
Cartier Divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
Cap Products with Cartier Divisors and the Divisor Homomorphism . . . . . . . . . 245
Rational Equivalence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
Basic Properties of Chow Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

2.3 K-Theory and Intersection Multiplicities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

Serre’s tor Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
K0 with Supports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
The Coniveau Filtration and the γ-Filtration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

2.4 Complexes Computing Chow Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

Higher Rational Equivalence and Milnor K-Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
Rost’s Axiomatics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

2.5 Higher Algebraic K-Theory and Chow Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

Stable Homotopy Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
Filtrations on the Cohomology of Simplicial Sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
Review of Basic Notions of K-Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
Quillen’s Spectral Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
K-Theory as Sheaf Hypercohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274



Gersten’s Conjecture, Bloch’s Formula
and the Comparison of Spectral Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
The Coniveau Spectral Sequence for Other Cohomology Theories. . . . . . . . . . . . 277
Compatibility with Products and Localized Intersections . . . . . . . . . . . . . . . . . . . . . . . . . 278
Other Cases of Gersten’s Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
Operations on the Quillen Spectral Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
The Multiplicativity of the Coniveau Filtration:
a Proof Using Deformation to the Normal Cone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

2.6 Bloch’s Formula and Singular Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

Cohomology Versus Homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
Local Complete Intersection Subschemes and Other Cocyles . . . . . . . . . . . . . . . . . . . 286
Chow Groups of Singular Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
Intersection Theory on Stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

2.7 Deformation to the Normal Cone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

2.8 Envelopes and Hyperenvelopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289



K-Theory and Intersection Theory 237

Introduction 2.1

The problem of defining intersection products on the Chow groups of schemes
has a long history. Perhaps the first example of a theorem in intersection theory
is Bézout’s theorem, which tells us that two projective plane curves C and D, of
degrees c and d and which have no components in common, meet in at most cd
points. Furthermore if one counts the points of C ∩ D with multiplicity, there are
exactly cd points. Bezout’s theorem can be extended to closed subvarieties Y and
Z of projective space over a field k, Pn

k , with dim(Y) + dim(Z) = n and for which
Y ∩ Z consists of a finite number of points.

When the ground field k = C, Bezout’s theorem can be proved using integral
cohomology. However, prior to the development of étale cohomology for curves
over fields of characteristic p, one had to use algebraic methods to prove Bezout’s
theorem, and there is still no cohomology theory which makes proving similar
theorems over an arbitrary base, including Spec(Z), possible.

In this chapter we shall outline the two approaches to intersection theory that
are currently available. One method is to reduce the problem of defining the inter-
section product of arbitrary cycles to intersections with divisors. The other method
is to use the product in K-theory to define the product of cycles. The difference
between the two perspectives on intersection theory is already apparent in the
possible definitions of intersection multiplicities. The first definition, due to Weil
and Samuel, first defines the multiplicities of the components of the intersection
of two subvarieties Y and Z which intersect properly in a variety X, when Y is
a local complete intersection in X, by reduction to the case of intersection with
divisors. For general Y and Z intersecting properly in a smooth variety X, the mul-
tiplicities are defined to be the multiplicities of the components of the intersection
of Y × Z with the diagonal ∆X in X × X. The key point here is that ∆X is a local
complete intersection in X × X. The second construction is Serre’s “tor formula”,
which is equivalent to taking the product, in K-theory with supports, of the classes
[OY ] ∈ KY

0 (X) and [OZ] ∈ KZ
0 (X). This definition works for an arbitrary regular

scheme X, since it does not involve reduction to the diagonal.
The Chow ring of a smooth projective variety X over a field was first constructed

using the moving lemma, which tells us that, given two arbitrary closed subvarieties
Y and Z of X, Z is rationally equivalent to a cycle

∑
i ni[Wi] in which all the Wi

meet Y properly. One drawback of using the moving lemma is that one expects
that [Y].[Z] should be able to be constructed as a cycle on Y ∩ Z, since (for
example) using cohomology with supports gives a cohomology class supported
on the intersection. A perhaps less important drawback is that it does not apply to
non-quasi-projective varieties.

This problem was solved, by Fulton and others, by replacing the moving lemma
by reduction to the diagonal and deformation to the tangent bundle. One can then
prove that intersection theory for varieties over fields is determined by intersections
with Cartier divisors, see Fulton’s book Intersection Theory [17] for details.

For a general regular scheme X, X ×X will not be regular, and the diagonal map
∆X → X × X will not be a regular immersion. Hence we cannot use deformation
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to the normal cone to construct a product on the Chow groups. In SGA6, [2],
Grothendieck and his collaborators showed that, when X is regular CH∗(X)Q �
Gr∗

γ(K0(X))Q , which has a natural ring structure, and hence one can use the product
on K-theory, which is induced by the tensor product of locally free sheaves, to define
the product on CH∗(X)Q . Here Gr∗

γ(K0(X)) is the graded ring associated to the
γ-filtration F·

γ(K0(X)). By construction, this filtration is automatically compatible
with the product structure on K0(X), and was introduced because the filtration
that is more naturally related to the Chow groups, the coniveau or codimension
filtration F·

cod(K0(X)), is not tautologically compatible with products. However,
in SGA6 Grothendieck proved, using the moving lemma, that if X is a smooth
quasi-projective variety over a field, then F·

cod(K0(X)) is compatible with products.
In this chapter, using deformation to the normal cone, we give a new proof of the
more general result that the coniveau filtration F·

cod(K∗(X)) on the entire K-theory
ring is compatible with products.

Instead of looking at the group K0(X), we can instead filter the category of
coherent sheaves on X by codimension of support. We then get a filtration on the
K-theory spectrum of X and an associated spectral sequence called the Quillen,
or coniveau, spectral sequence. The Chow groups appear as part of the E2-term
of this spectral sequence, while Gr∗

codK∗(X) is the E∞ term. The natural map
CH∗(X) → Gr∗

cod(K0(X)) then becomes an edge homomorphism in this spectral
sequence. The E1-terms of this spectral sequence form a family of complexes R∗

q(X)
for q ≥ 0, with Hq(R∗

q(X)) � CHq(X).
Let us writeR∗

X,q for the complex of sheaves withR∗
X,q(U) � R∗

q(U) for U ⊂ X an
open subset; we shall refer to these as the Gersten complexes. Gersten’s conjecture
(Sect. 2.5.6) implies that the natural augmentation Kq(OX) → R∗

X,q is a quasi-
isomorphism, which in turn implies Bloch’s formula:

Hq
(
X, Kq(OX)

) � CHq(X) .

If X is a regular variety over a field, Quillen proved Gersten’s conjecture, so that
Bloch’s formula is true in that case. (Bloch proved the q = 2 case by different
methods.) For regular varieties over a field, this then gives another construction of
a product on CH∗(X), which one may prove is compatible with the product defined
geometrically.

If X is a regular scheme of dimension greater than 0, the E1-term of the associ-
ated Quillen spectral sequence does not have an obvious multiplicative structure.
(Having such a product would imply that one can choose intersection cycles in
a fashion compatible with rational equivalence.) However, there is another spec-
tral sequence (the Brown spectral sequence) associated to the Postnikov tower of
the presheaf of K-theory spectra on X which is naturally multiplicative. In general
there is map from the Brown spectral sequence to the Quillen spectral sequence,
which maps Er to Er+1. If this map is an isomorphism, then the Quillen spectral
sequence is compatible with the product on K-theory from E2 on, and it follows
that the coniveau filtration on K∗(X) is also compatible with the ring structure on
K-theory. This map of spectral sequences is a quasi-isomorphism if Gersten’s con-
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jecture is true. Thus we have another proof of the multiplicativity of the coniveau
filtration F·

cod(K0(X)), which depends on Gersten’s conjecture, rather than using
deformation to the normal cone.

The groups H
p
Y (X, Kq(OX)), for all p and q, and for all pairs Y ⊂ X with Y

a closed subset of a regular variety X, form a bigraded cohomology theory with
nice properties, including homotopy invariance and long exact sequences, for pairs
Y ⊂ X with Y closed in X:

… → Hp−1
(
X − Y , Kq(OX)

) ∂→ H
p
Y

(
X, Kq(OX)

)

→ Hp
(
X, Kq(OX)

) → Hp
(
X − Y , Kq(OX)

) → … .

However, from the perspective of intersection theory, these groups contain a lot
of extraneous information; if one looks at the weights of the action of the Adams
operations on the Quillen spectral sequence, then it was shown in [64] that after
tensoring withQ, the spectral sequence breaks up into a sum of spectral sequences,
all but one of which gives no information about the Chow groups, and that the E1

term of the summand which computes the Chow groups can be described using
Milnor K-theory tensored with the rational numbers.

It is natural to ask whether one can build a “smallest” family of complexes
with the same formal properties that the Gersten complexes have, and which still
computes the Chow groups. As explained in Sect. 2.4.1, the “obvious” relations
that must hold in a theory of “higher rational equivalence” are also the relations
that define the Milnor K-theory ring as quotient of the exterior algebra of the units
in a field. The remarkable fact, proved by Rost, is that for smooth varieties over
a field, the obvious relations are enough, i.e., the cycle complexes constructed using
Milnor K-theory have all the properties that one wants. Deformation to the normal
cone plays a key role in constructing the product on Rost’s cycle complexes. This
result is strong confirmation that to build intersection theory for smooth varieties
over a field, one needs only the theory of intersections of divisors, together with
deformation to the tangent bundle. Rost also proves, though this is not needed for
his result, that the analog of Gersten’s conjecture holds for the complexes built out
of Milnor K-theory.

Thus for smooth varieties over a field, we have a good theory of Chow groups and
higher rational equivalence, whether we use Gersten’s conjecture or deformation
to the normal cone. For general regular schemes, there is not an obvious analog
of reduction to the diagonal and deformation to the tangent bundle. Gersten’s
conjecture still makes sense; however a new idea is needed in order to prove it. It
is perhaps worth noting that a weaker conjecture, that for a regular local ring R,
CHp(Spec(R)) = 0 for all p > 0 (see [12]), is still open.

Conventions 2.1.1

Schemes will be assumed to be separated, noetherian, finite dimensional, and
excellent. See EGA IV.7.8, [36], for a discussion of excellent schemes. We shall
refer to these conditions as the “standard assumptions”.
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Any separated scheme which is of finite type over a field or Spec(Z) automati-
cally satisfies these hypotheses.
By a variety we will simply mean a scheme which is of finite type over a field.
A scheme is said to be integral if it is reduced and irreducible.
The natural numbers are 1, 2, ….

Chow groups2.2

In this section we shall give the basic properties of divisors and Chow groups on
general schemes, and sketch the two geometric constructions of the intersection
product for varieties over fields, via the moving lemma and via deformation to the
normal cone.

Dimension and Codimension2.2.1

Normally one is used to seeing the group of cycles on a scheme equipped with
a grading – however it is important to remember that dimension is not always
a well behaved concept. In particular, for general noetherian schemes, while one
may think of cycles as homological objects, it is the grading by codimension that is
well defined.

The best reference for the dimension theory of general schemes is EGA IV,
§5, [36]. We shall summarize here some of the main points.

Recall that any noetherian local ring has finite Krull dimension. Therefore, if X
is a noetherian scheme, any integral subscheme Z ⊂ X with generic point ζ ∈ X,
has finite codimension, equal to the Krull dimension of the noetherian local ring
OX,ζ. We will also refer to this as the codimension of the point ζ.

1 Definition 1 A scheme (or more generally a topological space) X is said to be:
Catenary, if given irreducible closed subsets Y ⊂ Z ⊂ X, all maximal chains of

closed subsets between Y and Z have the same length.
Finite Dimensional, if there is a (finite) upper bound on the length of chains of

irreducible closed subsets.
A scheme S, is said to be universally catenary if every scheme of finite type over

S is catenary. Any excellent scheme is universally catenary.

Cycles2.2.2

2 Definition 2 Let X be a scheme (not necessarily satisfying the standard assump-
tions). A cycle on X is an element of the free abelian group on the set of closed
integral subschemes of X. We denote the group of cycles by Z(X).
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Since the closed integral subschemes of X are in one to one correspondence with
the points of X, with an integral subscheme Z ⊂ X corresponding to its generic
point ζ, we have:

Z(X) := ⊕
ζ∈X
Z .

For a noetherian scheme, this group may be graded by codimension, and we
write Zp(X) for the subgroup consisting of the free abelian group on the set of closed
integral subschemes of codimension p in X. If every integral subscheme of X is
finite dimensional, we can also grade the group Z(X) by dimension, writing Zp(X)
for the free abelian group on the set of closed integral subschemes of dimension
p in X. If X is a noetherian, catenary and finite dimensional scheme, which is
also equidimensional (i.e., all the components of X have the same dimension), of
dimension d then the two gradings are just renumberings of each other: Zd−p(X) =
Zp(X). However if X is not equidimensional, then codimension and dimension do
not give equivalent gradings:

Example 3. Suppose that k is a field, and that X = T ∪S, with T := A1
k and S := A2

k,
is the union of the affine line and the affine plane, with T ∩ S = {P}

a single (closed) point P. Then X is two dimensional. However any closed point in
T, other than P has dimension 0, and codimension 1, while P has dimension 0 and
codimension 2.

4Definition 4 If X is a general noetherian scheme, we write X(p) for the set of
points x ∈ X, which are of “codimension p”, i.e., such that the integral closed
subscheme {x} ⊂ X has codimension p, or equivalently, the local ring OX,x has
Krull dimension p.

We also write X(p) for the set of points x ∈ X such that the closed subset {x} ⊂ X
is finite dimensional of dimension p.

Observe that

Zp(X) �
⊕

x∈X(p)

Z ,

while, if X is finite dimensional,

Zq(X) �
⊕

x∈X(q)

Z .

Cycles of codimension 1, i.e. elements of Z1(X), are also referred to as Weil
divisors.

If Z ⊂ X is an closed integral subscheme, we will write [Z] for the associated
cycle, and will refer to it as a “prime cycle”. An element ζ ∈ Z(X) will then be
written ζ =

∑
i ni[Zi].
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If M is a coherent sheaf of OX-modules, let us write supp(M) ⊂ X for its
support. For each irreducible component Z of the closed subset supp(M) ⊂ X, the
stalk Mζ of M at the generic point ζ of Z is an OX,ζ-module of finite length.

5 Definition 5 The cycle associated to M is:

[M] :=
∑

ζ

�(Mζ)[Z] ,

where the sum runs over the generic points ζ of the irreducible components Z of
supp(M), and �(Mζ) denotes the length of the Artinian Oζ module Mζ.

If Y ⊂ X is a closed subscheme, we set [Y] := [OY ]; notice that if Y is an integral
closed subscheme then this is just the prime cycle [Y].

It will also be convenient to have:

6 Definition 6 Let W ⊂ X be a closed subset. Then Z
p
W (X) ⊂ Zp(X) is the subgroup

generated by those cycles supported in W , i.e., of the form
∑

i ni[Zi] with Zi ⊂ W .

If U ⊂ V ⊂ X are Zariski open subsets, and ζ =
∑

i ni[Zi] ∈ Zp(V) is a codi-
mension p cycle, then ζ|U :=

∑
i ni[Zi ∩ U] is a codimension p cycle on U . The

maps Zp(V) → Zp(U), for all pairs U ⊂ V define a sheaf on the Zariski topol-
ogy of X, Z

p
X which is clearly flasque. Note that Z

p
W (X) = H0

W (X, Z
p
X), and also

that if U is empty then Zp(U) is the free abelian group on the empty set, i.e.,
Zp(U) � 0.

Dimension Relative to a Base2.2.3

Dimension can behave in ways that seem counter-intuitive. For example, if U ⊂ X
is a dense open subset of a scheme, U may have strictly smaller dimension than
X. The simplest example of this phenomenon is if X is the spectrum of a discrete
valuation ring, so dim(X) = 1, and U is the Zariski open set consisting of the
generic point, so dim(U) = 0 . One consequence of this phenomenon is that the
long exact sequence of Chow groups associated to the inclusion of an open subset
into a scheme will not preserve the grading by dimension.

However, dimension is well behaved with respect to proper morphisms:

7 Theorem 7 Let f : W → X be a proper surjective morphism between inte-
gral schemes which satisfy our standing hypotheses. Then dim(W) = dim(X) +
tr. deg.k(X)k(W). In particular, if f is birational and proper, then dim(W) = dim(X).

Proof [36], proposition 5.6.5.
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This leads to the notion of relative dimension. By a theorem of Nagata, any mor-
phism f : X → S of finite type is compactifiable. I.e., it may be factored as f · i:

X ��
i

��f
�
�
�
�
�
�
�
�

X

��
f

S

with i an open immersion with dense image, and f proper.

8Lemma 8 If S and X are as above, the dimension of X minus the dimension of S is
independent of the choice of compactification X.

Proof This is a straightforward consequence of Theorem 7.

Therefore we may make the following definition:

9Definition 9 Let S be a fixed base, satisfying our standing hypotheses. If X is
a scheme of finite type over S, we set dimS(X) := dim(X) − dim(S), where X is any
compactification of X over S.

The key feature of relative dimension is that if X is a scheme of finite type over S
and U ⊂ X is a dense open, then dimS(X) = dimS(U). It follows that the grading
of the Chow groups of schemes of finite type over S by dimension relative to S is
compatible with proper push-forward. In this respect, Chow homology behaves
like homology with locally compact supports; see [15], where this is referred to as
LC-homology.

Note that if the base scheme S is the spectrum of a field, or of the ring of integers
in a number field, relative dimension and dimension give equivalent gradings,
differing by the dimension of the base, on the cycle groups.

An equivalent approach to the definition of dimS(X) may be found in Fulton’s
book on intersection theory ([17]) using transcendence degree.

Cartier Divisors 2.2.4

The starting point for intersection theory from the geometric point of view is the
definition of intersection with a Cartier divisor.

Let X be a scheme. If U ⊂ X is an open set, a section f ∈ OX(U) is said to be
regular if, for every x ∈ U , its image in the stalk OX,x is a non-zero divisor. The
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regular sections clearly form a subsheaf OX,reg of the sheaf of monoids (with respect
to multiplication) OX . The sheaf of total quotient rings KX is the localization of
OX with respect to OX,reg. Note that the sheaf of units K∗

X is the sheaf of groups
associated to the sheaf of monoids OX,reg, and that the natural map OX → KX is
injective.

10 Definition 10 WriteDivX for the sheafK∗
X |O∗

X . The group Div(X) of Cartier divisors
on X is defined to be H0(X, DivX). Note that we will view this as an additive group.

If D ∈ Div(X), we write |D| for the support of D, which is of codimension 1 in X
if D is non-zero. A Cartier divisor D is said to be effective if it lies in the image of

H0
(
X, OX,reg

) → H0
(
X, DivX � K∗

X |O∗
X

)
.

For details, see [37] IV part 4, §21. See also the article of Kleiman [43] for patholo-
gies related to the sheaf of total quotient rings on a non-reduced scheme.

There is a long exact sequence:

0 → H0
(
X, O∗

X

) → H0
(
X, K∗

X

) → H0
(
X, K∗

X |O∗
X

) →
H1

(
X, O∗

X

) → H1
(
X, K∗

X

) → …

Recall that a Cartier divisor is said to be principal if it is in the image of

H0
(
X, K∗

X

) → H0
(
X, DivX = K∗

X |O∗
X

)
.

Two Cartier divisors are said to be linearly equivalent if their difference is principal.
From the long exact sequence above we see that there is always an injection of
the group of linear equivalence classes of Cartier divisors into the Picard group
H1(X, O∗

X) of isomorphism classes of rank one locally free sheaves. If H1(X, K∗
X) �

0 (for example if X is reduced), this injection becomes an isomorphism. Note that
there are examples of schemes for which the map from the group of Cartier divisors
to Pic(X) is not surjective. See the paper [44] of Kleiman for an example.

More generally, if W ⊂ X is a closed subset, we can consider H1
W (X, O∗

X), i.e.,
the group of isomorphism classes of pairs (L, s) consisting of an invertible sheaf
L and a non-vanishing section s ∈ H0(X − W , L). Then one has:

11 Lemma 11 If X is reduced and irreducible, so that K∗
X is the constant sheaf, and

W if has codimension at least one, then

H0
W

(
X, K∗

X |O∗
X

) � H1
W

(
X, O∗

X

)
.

If D is a Cartier divisor on X, the subsheaf of K∗
X which is the inverse image of D

is an O∗
X torsor – the sheaf of equations of D. The OX submodule of KX generated

by this subsheaf is invertible; i.e., it is a fractional ideal. The inverse of this sheaf is
denoted OX(D) and its class is the image of D in H1(X, O∗

X) under the boundary
map, see [37].
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Cap Products with Cartier Divisors
and the Divisor Homomorphism 2.2.5

There is a natural map from the group of Cartier divisors to the group of Weil
divisors:

12Lemma 12 Let X be a scheme. Then there is a unique homomorphism of sheaves:

div : DivX → Z1
X ,

such that, if U ⊂ X is an open set and f ∈ OX,reg(U) is a regular element, then
div(f ) = [OU |(f )] – the cycle associated to the codimension one subscheme with
equation f .

Proof See [37] §21.6.

If X is regular, or more generally locally factorial, one can show that this map is an
isomorphism.

If X is an integral scheme, then since KX is the constant sheaf associated to the
function field k(X) of X, we get a homomorphism, also denoted div:

div : k(X)∗ → Z1(X)

13Remark 13 Observe that if X is a scheme and D ⊂ X is a codimension 1 subscheme,
the ideal sheaf ID of which is locally principal, then the Cartier divisor given by
the local generators of ID has divisor equal to the cycle [D] = [OD].

14Definition 14 Suppose that D ∈ Div(X) is a Cartier divisor, and that Z ⊂ X is
an irreducible subvariety, such that |D| ∩ Z is a proper subset of Z. The Cartier
divisor D determines an invertible sheaf OX(D), equipped with a trivialization
outside of |D|. Restricting OX(D) to Z, we get an invertible sheaf L equipped with
a trivialization s on Z−(Z∩|D|). Since Z is irreducible, and Z∩|D| has codimension
at least 1 in Z, by Lemma 11 H1

Z∩|D|(Z, O∗
Z) � H0

Z∩|D|(Z, DivZ), and hence the pair
(L, s) determines a Cartier divisor on Z, which we write D|Z , and which we call
the restriction of D to Z.

15Definition 15 We define the cap product D ∩ [Z] to be div(D|Z) ∈ Z1(Z).
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Rational Equivalence2.2.6

16 Definition 16 If X is a scheme, the direct sum

R(X) := ⊕
ζ∈X

k(ζ)∗

where k(ζ)∗ is the group of units in the residue field of the point ζ, will be called
the group of “K1-chains” on X. For a noetherian scheme, this group has a natural
grading, in which

Rq(X) :=
⊕

x∈X(q)

k(x)∗ .

We call this the group of codimension q K1-chains.
If X is finite dimensional, then we can also grade R(X) by dimension:

Rp(X) :=
⊕

x∈X(p)

k(x)∗ .

If X is catenary and equidimensional, these gradings are equivalent.

The sum of the homomorphisms div : k(Z)∗ → Z1(Z), as Z runs through all
integral subschemes Z ⊂ X, induces a homomorphism, for which we use the same
notation:

div : R(X) → Z(X) .

We say that a cycle in the image of div is rationally equivalent to zero.

17 Definition 17 If X is a general scheme, then we set the (ungraded) Chow group of
X equal to:

CH(X) := coker(div) .

Now suppose that X satisfies our standing assumptions. The homomorphism
div is of pure degree −1 with respect to the grading by dimension (or by relative
dimension for schemes over a fixed base), and we set CHq(X) equal to the cokernel
of

div : Rq+1(X) → Zq(X) .

The homomorphism div is not in general of pure degree +1 with respect to
the grading by codimension, unless X is equidimensional, but it does increase
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codimension by at least one, and so we define CHp(X) to be the cokernel of the
induced map:

div :
⊕

x∈X(p−1)

k(x)∗ →
⊕

x∈X(p)

Z

f =
∑

x

{fx} �→
∑

x

div({fx}) .

We refer to these as the Chow groups of dimension q and codimension p cycles on
X, respectively.

If X is equidimensional of dimension d, then dimension and codimension are
compatible, i.e., CHp(X) � CHd−p(X).

The classical definition of rational equivalence of cycles on a variety over a field
was that two cycles α and β were rationally equivalent if there was a family of
cycles ζt , parameterized by t ∈ P1, with ζ0 = α and ζ∞ = β. More precisely, sup-
pose that W is an irreducible closed subvariety of X × P1, which is flat over
P

1 (i.e., not contained in a fiber of X × {t}, for t ∈ P1). For each t ∈ P1,
(X × {t}) is a Cartier Divisor, which is the pull back, via the projection to P1,
of the Cartier divisor [t] corresponding to the point t ∈ P1. Then one sets, for
t ∈ P1, Wt := [W].(X × {t}). (Note that [W] and the Cartier divisor (X × {t})
intersect properly). The cycle W∞ − W0 is then said to be rationally equiva-
lent to zero. (Note that [0] and [∞] are linearly equivalent Cartier divisors.)
More generally a cycle is rationally equivalent to zero if it is the sum of such
cycles.

It can be shown that this definition agrees with the one given previously, though
we shall not use this fact here.

Just as we sheafified the cycle functors to get flasque sheaves Z
p
X , we have

flasque sheaves R
q
X , with R

q
X(U) = Rq(U). The divisor homomorphism then gives

a homomorphism:

div : R
q−1
X → Z

q
X

and an isomorphism:

CHq(X) � H1(X, R
q−1
X → Z

q
X) .

18Lemma 18 The map Div(X) → CH1(X) induced by div factors through Pic(X),
and vanishes on principal divisors.

Proof If x ∈ X(0) is a generic point of X, then the local ring OX,x is Artinian,
and OX,reg,x = O∗

X,x. Hence KX,x = OX,x, and so there is a natural homomorphism
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K∗
X,x → k(x)∗. Therefore there is a commutative diagram of maps of sheaves of

abelian groups:

O∗
X

��

��

K∗
X

��

�� R0
X

��

0 �� DivX
��

div

Z1
X

Hence we get maps:

Div(X) → H1(X, O∗
X) � H1(X, K∗

X → DivX)

→ H
1(X, R0

X → Z1
X) � CH1(X) .

It follows by a diagram chase that the map from Cartier divisors on X to
Weil divisors X induces a map from linear equivalence classes of Cartier di-
visors to rational equivalence classes of Weil divisors which factors through
Pic(X).

From this lemma and the intrinsic contravariance of H1
W (X, O∗

X), we get the fol-
lowing proposition.

19 Proposition 19 Let f : Y → X be a morphism of varieties. Let W ⊂ X be a closed
subset, suppose that φ ∈ H0

W (X, DivX) is a Cartier divisor with supports in W ,
and that ζ ∈ Z

p
T(Y) is a cycle supported in a closed subset T ⊂ Y . Then there is

a natural “cap” product cycle class φ ∩ ζ ∈ CHp+1
(T∩f −1(W))

(Y).

Note that if φ above is a principal effective divisor, given by a regular element
g ∈ Γ(X, OX), which is invertible on X − W , and if ζ = [Z] is the cycle associated
to a reduced irreducible subvariety Z ⊂ X, with f (Z) � W , then f ∗(g)|Z is again
a regular element, and φ ∩ ζ is the divisor associated to f ∗(g)|Z discussed in
Definition 15.

Finally, the other situation in which we can pull back Cartier divisors is if
f : X → Y is a flat morphism of schemes. Since f is flat, if x ∈ X, and t ∈ OY ,f (x)

is a regular element, then f ∗(t) is a regular element in OX,x. It follows that there is
a pull-back

f ∗ : f −1KY → KX ,

and hence an induced map on Cartier divisors.
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Basic Properties of Chow Groups 2.2.7

Functoriality
Let f : X → Y be a morphism of schemes.

If f is flat, then there is a pull-back map f ∗ : Zp(Y) → Zp(X), preserving
codimension. If Z ⊂ X is an closed integral subscheme, then:

f ∗ : [Z] �→ [OX ⊗OY OZ] ,

which is then extended to the full group of cycles by linearity.
If f is proper, then there is a push-forward map on cycles; if Z is a k-dimensional

closed integral subscheme, then:

f∗([Z]) =






[k(Z) : k(f (Z))] [ f (Z)] if dim(f (Z)) = dim(Z)

0 if dim(f (Z)) < dim(Z) .

Push-forward preserves dimension, or dimension relative to a fixed base S, by
Theorem 7.

20Proposition 20 Both flat pull-back and proper push-forward are compatible with
rational equivalence, and therefore induce maps on Chow groups. I.e., if f : X → Y
is a morphism of schemes, we have maps:

f ∗ : CHp(Y) → CHp(X)

for f flat, and

f∗ : CHq(X) → CHq(Y)

for f proper.

See [17], for proofs, at least for maps between varieties over fields. For general
schemes, there is a proof in [24] using algebraic K-theory.

Intersection Multiplicities and the Moving Lemma
The product structure on the Chow groups of a smooth quasi-projective variety
over a field was first constructed in the 1950’s. See Séminaire Chevalley ([1]),
exposés 2 and 3. Two key steps in the construction are:

Defining intersection multiplicities.
The Moving Lemma.

Suppose that X is a noetherian scheme. Two closed subsets Y and Z of X, of
codimensions p and q, respectively, are said to intersect properly if every irreducible
component W of Y ∩ Z has codimension p + q – note that this is vacuously true
if Y and Z do not intersect. Two cycles η =

∑
i mi[Yi] and ζ =

∑
j nj[Zj] are said
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to meet properly if their supports intersect properly. If two prime cycles [Y] and
[Z] meet properly, then the problem of intersection multiplicities is to assign an
integer µW (Y , Z) to each irreducible component W of Y ∩ Z. These multiplicities
should have the property that if one defines the product of two prime cycles [Y]
and [Z] to be [Y].[Z] =

∑
W µW (Y , Z)[W], then one gets a ring structure on the

Chow groups.
To get a well defined product, one would certainly require that if η and ζ are

two cycles which meet properly, and η (resp. ζ) is rationally equivalent to a cycle
η′ (resp. ζ′), such that η′ and ζ′ meet properly, then η.ζ and η′.ζ′ are rationally
equivalent, and that every pair of cycles η and ζ is rationally equivalent to a pair
η′ and ζ′ which meet properly. Finally, one requires, that the product with divisors
be consistent with intersection with divisors.

Since η.ζ is defined when η is a divisor, then it will also be defined when
η = α1. … .αp is the successive intersection product of divisors. (Of course one
should worry whether this product is independent of the choice of the αi.) Thus
one will be able to define to define [Y].ζ when Y ⊂ X is a closed subvariety which
is globally a complete intersection in X. If Y is only a local complete intersection,
and if W is an irreducible component of Y ∩ Z with generic point w, then one
defines the intersection multiplicity µW (Y , Z) by using the fact that Y is a complete
intersection in a Zariski open neighborhood of w.

The original definition of the intersection multiplicities of the components of
the intersection of two closed integral subschemes Y ⊂ X and Z ⊂ X which meet
properly on a smooth variety X over a field, was given by Samuel [59], when one
of them, Y say, is a local complete intersection subscheme of X. One then defines
the multiplicities for general integral subschemes Y and Z of a smooth variety X,
by observing that Y ∩ Z = ∆X ∩ (Y ×k Z), where ∆X ⊂ X ×k X is the diagonal, and
then setting the µW (Y , Z) = µ∆W (∆X , Y ×k Z). Note that ∆X is an l.c.i. subvariety if
and only if X is smooth.

Once given a definition of multiplicity, one has an intersection product for cycles
which meet properly. The next step is:

21 Theorem 21: Chow’s Moving Lemma Suppose that X is a smooth quasi-projective
variety over a field k, and that Y and Z are closed integral subschemes of X. Then
the cycle [Y] is rationally equivalent to a cycle η which meets Z properly.

Proof See [1] and [55].

22 Theorem 22 Let X be a smooth quasi-projective variety over a field k. Then one has:
Given elements α and β in the Chow ring, let η and ζ be cycles representing
them which meet properly (these exist by the moving lemma). Then the class
in CH∗(X) of η.ζ is independent of the choice of representatives η and ζ, and
depends only on α and β.
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The product on CH∗(X) that this defines is commutative and associative.
Given an arbitrary (i.e., not necessarily flat) morphism f : X → Y between
smooth projective varieties, there is a pull back map CH∗(Y) → CH∗(X),
making X �→ CH∗(X) is a contravariant functor from the category of quasi-
projective smooth varieties to the category of commutative rings.

Proof See Séminaire Chevalley, exposés 2 and 3 in [1].

There are several drawbacks to this method of constructing the product on the
Chow ring:

It only works for X smooth and quasi-projective over a field.
It does not respect supports. It is reasonable to expect that the intersection
product of two cycles should be a cycle supported on the set-theoretic intersec-
tion of the support of the two cycles, but the Moving Lemma does not “respect
supports”.
It requires a substantial amount of work to check that this product is well
defined and has all the properties that one requires.

In the next section, we shall see an alternative geometric approach to this problem.

Intersection via Deformation to the Normal Cone
Let us recall the goal: one wishes to put a ring structure on CH∗(X), for X a smooth
quasi-projective variety, and one wants this ring structure to have various proper-
ties, including compatibility with intersections with Cartier divisors. The approach
of Fulton, [17], as it applies to smooth varieties over a field, can be summarized in
the following theorem:

23Theorem 23 On the category of smooth, not necessarily quasi-projective, varieties
over a field, there is a unique contravariant graded ring structure on CH∗ such that:
1. It agrees with flat pull-back of cycles when f : X → Y is flat.
2. It agrees with the product CH1(X) × CHp(X) → CHp+1(X) induced by inter-

section with Cartier divisors, for all X and p.
3. If V and W are arbitrary integral closed subschemes a smooth variety X, then

we have an equality of cycles on X ×k X:

[V ×k X].[X ×k W] = [V ×k W]

4. If f : X → Y is a proper map between nonsingular varieties, and α ∈
CH∗(X), β ∈ CH∗(Y), then

f∗
(
α.f ∗(β)

)
= f∗(α).β .

(The projection formula)
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5. If p : V → X is a vector bundle over a variety X, then the flat pull-back map
p∗ : CH∗(X) → CH∗(V) is an isomorphism. (Homotopy Invariance).

Sketch of Proof
Any map f : Y → X of smooth varieties can be factored into Y

Γf→ Y × X
πX→ X,

with Γf the graph of f , and πX the projection map. Since πX is flat, to define
f ∗ : CH∗(X) → CH∗(Y) we need only define Γ∗

f .
Therefore we need only construct the pull-back map for a general regular

immersion f : Y → X. First we need (see [17], sects. 2.3 and 2.4, especially
corollary 2.4.1):

24 Lemma 24: Specialization Let D ⊂ S be a principal divisor in the scheme S. Since
OS(D)|D is trivial, intersection with D, ∩[D] : CH∗(D) → CH∗−1(D), is zero. It
follows that ∩[D] : CH∗(S) → CH∗(D) factors through CH∗(S − D).

Let WY |X be the associated deformation to the normal bundle space (see [3] and
appendix 2.7). Since the special fiber W0 ⊂ WY |X is a principal divisor, there is an
associated specialization map

σ : CH∗ (
(WY |X − NY |X) � X ×Gm

) → CH∗(W0) .

Composing with the flat pull-back:

CH∗(X) → CH∗(X ×Gm) ,

we get a map

CH∗(X) → CH∗(NY |X) � CH∗(Y) ,

where CH∗(NY |X) � CH∗(Y) by homotopy invariance.
It is not difficult to show, using homotopy invariance, that this must agree with

the pull-back map.
Finally, to get the product, one simply composes the pull-back along the inclu-

sion of the diagonal with the external product

CH∗(X) × CH∗(X) → CH∗(X × X) .

This geometric construction avoids any need to give a definition of intersection
multiplicity, and also shows that for any two cycles Y and Z, Y .Z is naturally a cycle
on the intersection supp(Y) ∩ supp(Z).

Corresponding to this cohomology theory on the category of non-singular
varieties over a field k, we also have Chow Homology groups, defined for all varieties
over k:
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25Definition 25 If X is a (possibly singular) variety over a field, let Zp(X) be the
group of dimension p cycles on X, and CHp(X) the corresponding quotient by
rational equivalence. These groups are covariant functors with respect to proper
morphisms between varieties, and contravariant with respect to flat maps (but
with a degree shift by the relative dimension).

K-Theory and Intersection Multiplicities 2.3

Serre’s tor Formula 2.3.1

While deformation to the normal cone tells us that intersection theory is unique,
given a collection of reasonable axioms, one can ask if there is an intrinsic, purely
algebraic, description of intersection multiplicities, and in particular a definition
that is valid on any regular scheme. A solution to this problem was given by Serre
in his book [61].

If R is a noetherian local ring, an R-module has finite length if and only if it
is supported at the closed point of Spec(R), and K0 of the category of modules of
finite length is isomorphic, by dévissage, to K0 of the category of vector spaces over
the residue field k of R, i.e., to Z. Given an R-module M of finite length, we write
�(M), for its length.

26Definition 26 Suppose that R is a regular local ring, and that M and N are finitely
generated R-modules, the supports of which intersect only at the closed point of
Spec(R), then Serre defines their intersection multiplicity:

χ(M, N) :=
∑

i≥0

(−1)i�
(
TorR

i (M, N)
)

.

In his book, Serre proved:

27Theorem 27 The multiplicity defined above agrees with Samuel’s multiplicity,
when that is defined.

28Theorem 28 If R is essentially of finite type over a field, and if the codimensions
of the supports of M and N sum to more than the dimension of R, then the
intersection multiplicity vanishes, while if the sum is equal to the dimension of R,
the intersection multiplicity is (strictly) positive.
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Idea of Proof
There are two key points:

Reduction to the diagonal. If R is a k-algebra, and M and N are R-modules,
then M ⊗R N � R ⊗R⊗kR (M ⊗k N). Thus if M and N are flat k-modules, as is
the case when k is a field, to understand TorR∗ (M, N), it is enough to understand
Tor

R⊗kR
∗ (R, _).

Koszul Complexes. If R is regular local ring which is a localization of an al-
gebra which is smooth over a field k, then a choice of system of parame-
ters for R determines a finite free resolution of R as an R ⊗k R-algebra by
a Koszul complex. One proves positivity, first for intersections with princi-
pal effective Cartier divisors, and then using induction on the number of
parameters.

Serre conjectured:

29 Conjecture 29 The conclusion of the theorem holds for any regular local ring.

The vanishing conjecture was proved in 1985 by Roberts [56] and independently
by Gillet and Soulé [21]. Non-negativity (but not strict positivity) was proved by
Gabber in 1996. Gabber’s proof uses, in an essential fashion, de Jong’s theorem [14]
on the existence of non-singular alterations of varieties over discrete valuation
rings. Gabber did not publish his proof, but there are various expositions of it, for
example by Berthelot in his Bourbaki exposé on the work of de Jong [4] and by
Roberts [57].

K0 with Supports2.3.2

Serre’s definition of intersection multiplicity can be rephrased using K0 with sup-
ports. (We shall discuss higher K-theory with supports later).

Let X be a noetherian scheme. Then if Y ⊂ X is a closed subset, we define KY
0 (X)

to be the quotient of the Grothendieck group of bounded complexes of locally free
coherent sheaves of OX-modules, having cohomology with supports in Y , by the
subgroup of classes of acyclic complexes.

There is a natural map

KY
0 (X) → G0(Y)

[E∗] �→
∑

i

(−1)i [H i(E∗)] .

If X is a regular noetherian scheme this is map is an isomorphism, because every
coherent sheaf has a resolution by locally free sheaves.
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If Y and Z are closed subsets of X, then there is a natural product

KY
0 (X) ⊗ KZ

0 (X) → KY∩Z
0 (X)

given by

[E∗] ⊗ [F ∗] �→ [E∗ ⊗OX F ∗] .

(The definition of the tensor product of two complexes may be found, for example,
in [70]).

If X is regular then this induces a pairing:

G0(Y) ⊗ G0(Z) → G0(Y ∩ Z)

[E] ⊗ [F ] �→
∑

i

(−1)i
[
T orOX

i (E , F )
]

.

Therefore we see that Serre’s intersection multiplicity is a special case of the
product in K-theory with supports. I.e., if X = Spec(R), with R a regular local
ring, and if M and N are finitely generated R-modules with supports Y ⊂ X and
Z ⊂ X respectively, such that Y ∩ Z = {x}, with x ∈ X the closed point, then
χ(M, N) = [M].[N] ∈ K{x}

0 (X) � Z, where [M] ∈ KY
0 (X) is the class of any

projective resolution of M, and similarly for [N].

The Filtration by Codimension of Supports

30Definition 30 A family of supports on a topological space X is a collection Φ of
closed subsets of X which is closed under finite unions, and such that any closed
subset of a member of Φ is also in Φ. Given two families of supports Φ and Ψ we
set Φ ∧ Ψ equal to the family generated by the intersections Y ∩ Z with Y ∈ Φ and
Z ∈ Ψ.

31Definition 31 Let X be a scheme, and let Φ be a family of supports on X. Then

KΦ
0 (X) := lim→ Y∈Φ

KY
0 (X)

Clearly there is a product

KΦ
0 (X) ⊗ KΨ

0 (X) → KΦ∧Ψ
0 (X) .

For intersection theory, the most important families of supports are X≥i, the
closed subsets of codimension at least i, and X≤j, the subsets of dimension at
most j.
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32 Definition 32 The filtration by codimension of supports, or coniveau filtration, is
the decreasing filtration, for i ≥ 0:

Fi
cod(K0(X)) := Image

(
KX≥i

0 (X) → K0(X)
)

.

Similarly, we can consider the coniveau filtration on G0(X) where Fi(G0(X)) is the
subgroup of G0(X) generated by the classes of those OX-modules [M] for which
codim(Supp(M)) ≥ i.

We shall write Gr�cod(K0(X)) and Gr�cod(G0(X)) for the associated graded groups.

The Coniveau Filtration and Chow Groups
If Y ⊂ X is a codimension p subscheme of a Noetherian scheme, then [OX] ∈
Fp(G0(X)). Thus we have a map:

Zp(X) → F
p
cod(G0(X)) .

By dévissage, i.e., the fact that every coherent sheaf has a filtration with quo-
tients which are coherent sheaves on, and have supports equal to, closed integral
subschemes, ([2] appendix to exp. 0, prop. 2.6.), we have:

33 Lemma 33 If X is a noetherian scheme, the induced map

Zp(X) → Grp
cod(G0(X))

is surjective.

34 Theorem 34 For an arbitrary noetherian scheme, this map factors through CHp(X).

Proof The original proof due to Grothendieck, is in op. cit., appendix to exp. 0,
Theorem 2.12. One can also observe that the homomorphism of Lemma 33 is simply
an edge homomorphism from Zp(X) = E

p,−p
1 to Grp

cod(G0(X)) = E
p,−p
∞ in the Quillen

spectral sequence (Sect. 2.5.4 below) which factors through E
p,−p
2 � CHp(X).

Because there is such a close relationship between the Chow groups and Gr·
codK0,

including the fact that Serre’s definition of intersection multiplicities is via the prod-
uct in K-theory, it is reasonable to ask whether the product structure on K-theory
is compatible with the coniveau filtration, i.e., whether F

p
cod(K0(X)).F

q
cod(K0(X)) ⊂

F
p+q
cod (K0(X)).

Observe that this is not true at the level of modules. I.e., if E∗ and F ∗ are
complexes of locally free sheaves of OX-modules which have their cohomology
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sheaves supported in codimensions p and q respectively, then it is not in general
true that E∗ ⊗OX F ∗ has its cohomology sheaves in codimension at least p + q.

The following theorem was proved by Grothendieck, using Chow’s moving
lemma; see [2], appendix to exp. 0, §4, corollary 1 to theorem 2.12.

35Theorem 35 If X is a smooth quasi-projective variety over a field, then the product
structure on K0(X) is compatible with the coniveau filtration.

Using the Riemann–Roch theorem for a closed immersion between smooth (not
necessarily quasi-projective) varieties, one can extend Grothendieck’s result to all
smooth varieties. See [32] for details. Later, in Sect. 2.5.11, we shall prove the
analogous result for Kp(X) for all p ≥ 0, again for general smooth varieties over
a field, using deformation to the normal cone rather than the moving lemma. There
is also another proof of this more general result, which uses Quillen’s theorem that
Gersten’s conjecture is true for non-singular varieties, together with the homotopy
theory of sheaves of spectra, in Sect. 2.5.6 below.

In general, one conjectures:

36Conjecture 36: Multiplicativity of the coniveau filtration If X is a regular noethe-
rian scheme, the product on K-theory respects the filtration by codimension of
supports, and ∗ is the product on K-theory:

Fi
cod

(
KY

0 (X)
) ∗F

j
cod

(
KZ

0 (X)
) ⊂ F

i+j
cod

(
KY∩Z

0 (X)
)

Note that:

37Proposition 37 Conjecture 36 implies Serre’s vanishing conjecture.

Proof Suppose that R is a regular local ring of dimension n, and that M and N are
finitely generated R-modules, supported on closed subsets Y (of codimension p)
and Z (of codimension q) of X = Spec(R). Suppose also that Y ∩ Z = {x}, where
x ∈ X is the closed point. Then [M] ∈ F

p
cod(KY

0 (X)), [N] ∈ F
q
cod(KZ

0 (X)), and

χ(M, N) = [M] ∪ [N] ∈ F
p+q
cod

(
K{x}

0 (X)
)

.

Now K{x}
0 (X) � Z[k(x)], with [k(x)] ∈ Fn

cod(K{x}
0 (X)) \ Fn+1

cod (K{x}
0 (X)). Therefore if

p + q > n, we have

χ(M, N) = [M] ∪ [N] ∈ Fn+1
cod

(
K{x}

0 (X)
)

� 0 .

In the next section, we shall sketch how Conjecture 36 can be proved, after tensoring
withQ, following the method of [21].
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The Coniveau Filtration and the γ-Filtration2.3.3

In [2] Grothendieck constructed a product on CH∗(X)Q , for X a regular scheme, by
constructing a multiplicative filtration F·

γ (K0(X)) on K0, such that there are Chern
classes with values in the graded ring Gr·

γ(K0(X))Q . He then used the Chern classes
to define an isomorphism:

CH∗(X)Q � Gr·
γK0(X)Q ,

and hence a product on CH∗(X)Q .
For any scheme, there are operations λi : K0(X) → K0(X), defined by taking ex-

terior powers: λi([E]) = [
∧i(E)]. Note that these are not group homomorphisms,

but rather λn(x + y) =
∑n

i=0 λi(x)λ(n−i)(y).

38 Definition 38 The γ-operations are defined by:

γn : K0(X) → K0(X)

γn : x �→ λn
(
x + (n − 1)[OX]

)
.

The γ-filtration F·
γ(K0(X)) is defined by setting F1

γ(K0(X)) equal to the subgroup
generated by classes that are (locally) of rank zero, and then requiring that if
x ∈ F1

γ(K0(X)) then γ i(x) ∈ Fi
γ(K0(X)), and that the filtration be multiplicative, i.e.,

Fi
γ (K0(X)).F

j
γ(K0(X)) ⊂ F

i+j
γ (K0(X)), so that the associated graded object Gr·

γK0(X)
is a commutative ring, which is contravariant with respect to X.

Recall, following [38], that a theory of Chern classes with values in a cohomology
theory A∗ associates to every locally free sheaf E of OX-modules on a scheme X,
classes Ck(E) ∈ Ak(X), for k ≥ 0 such that
1. C0(E) = 1.
2. The map L → C1(L) ∈ A1(X) defines a natural transformation Pic → A1.
3. If

0 → E → F → G → 0

is an exact sequence of locally free sheaves, then, for all n ≥ 0, we have the
Whitney sum formula:

Cn(F ) =
n∑

i=0

Ci(E)Cn−i(G) .

39 Proposition 39: Grothendieck, [2] The natural transformations which assign to
a locally free sheaf E of OX-modules, the elements, for k ≥ 1,

Ck(E) := γk([E] − rk(E)) ∈ Grk
γK0(X) ,

satisfy the axioms for Chern classes.
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Corresponding to these classes there is a Chern character which is a natural
transformation:

ch : K0(X) → Gr∗
γ(K0(X))Q

The following theorem is proved in [2], theorem VII 4.11, where there is the extra
assumption that X possesses an ample sheaf. However as explained in [32], the
same proof, with only minor modifications, works for general regular schemes.
This theorem also follows from the results of Soulé ([64]), where the result is also
proved for K1 and K2, by studying the action of the Adams operations on the
Quillen spectral sequence; see Theorem 78 below.

40Theorem 40 If X is a regular scheme, the Chern character induces an isomorphism:

Gr∗
cod(K0(X))Q → Gr∗

γ(K0(X))Q

Furthermore, there is an isomorphism, for each k ≥ 0

CHk(X)Q → Grk
γ(K0(X))Q

[Y] �→ chk([OY ])

41Corollary 41 If X is a regular Noetherian scheme, the coniveau filtration on K0(X)Q
is multiplicative.

In [21], it shown that one can also construct lambda operations on K-theory with
supports, and that, after tensoring withQ, the coniveau filtration and γ-filtrations
on the K0, with supports in a closed subset, of a finite dimensional regular noethe-
rian scheme are isomorphic, and hence the coniveau filtration (tensorQ) is multi-
plicative. An immediate consequence of this result is Serre’s vanishing conjecture
for general regular local rings. Robert’s proof in [56] used Fulton’s operational
Chow groups, which give an alternative method of constructing the product on
CH∗(X)Q for a general regular Noetherian scheme.

Complexes Computing Chow Groups 2.4

Higher Rational Equivalence and Milnor K-Theory 2.4.1

Suppose that X is a noetherian scheme, and that Y ⊂ X is a closed subset
with complement U = X − Y . Then we have short exact sequences (note that
Z(Y) and R(Y) are independent of the particular subscheme structure we put
on Y):

0 → R(Y) → R(X) → R(U) → 0
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and

0 → Z(Y) → Z(X) → Z(U) → 0

and hence an exact sequence:

Ker
(
div : R(U) → Z(U)

) → CH(Y) → CH(X) → CH(U) → 0 .

It is natural to ask if this sequence can be extended to the left, and whether there is
a natural notion of rational equivalence between K1-chains. In particular are there
elements in the kernel Ker(div : R(U) → Z(U)) that obviously have trivial divisor,
and so will map to zero in CH(Y)?

Let us start by asking, given a scheme X, whether there are elements in R(X)
which obviously have divisor 0. First of all, any f ∈ k(x)∗ which has valuation
zero for all discrete valuations of the field k(x) is in the kernel of the divisor map.
However since we are dealing with general schemes, the only elements of k(x)
which we can be sure are of this form are ±1.

Suppose now that X is an integral scheme, and that f and g are two rational
functions on X, i.e., elements of k(X)∗, such that the Weil divisors div(f ) and div(g)
have no components in common. Writing {f } and {g} for the two (principal) Cartier
divisors defined by these rational functions, we can consider the two cap products:

{f } ∩ div(g) = div
{

f |div(g)

}

and

{g} ∩ div(f ) = div
{

g|div(f )

}
.

Here {f }|∑
i[Yi] :=

∑
i{f }|[Yi], where {f }|[Yi] denotes, equivalently, the restriction

of f either as a Cartier divisor (Definition 14), or simply as a rational function
which is regular at the generic point of Yi. If one supposes that the cap product
between Chow cohomology and Chow homology is to be associative, and that the
product in Chow cohomology is to be commutative, then we should have:

{f } ∩ ({g} ∩ [X]
)

=
({f } ∗ {g}) ∩ [X]

=
({g} ∗ {f }) ∩ [X]

= {g} ∩ ({f } ∩ [X]
)

.

I.e. the K1-chain

g|div(f ) − f |div(g)

should have divisor zero.
That this is indeed the case follows from the following general result, in which

{f } and {g} are replaced by general Cartier divisors.



K-Theory and Intersection Theory 261

42Proposition 42: Commutativity of Intersections of Cartier Divisors Let X be an
integral scheme, and suppose that φ and ψ are two Cartier divisors, with div(φ) =∑

i ni[Yi] and div(ψ) =
∑

j mj[Zj] their associated Weil Divisors. Then
∑

i

nidiv
(
ψ|Yi

)
=

∑

j

mjdiv
(
φ|Zj

)
.

The original proof of this result, in [24], used higher algebraic K-theory, and
depended on the properties of the coniveau spectral sequence for K-theory ([53]).
However if one wants to avoid proofs using K-theory, then for varieties over fields
this is proved in Fulton’s book ([17], theorem 2.4), and there is a purely algebraic
proof of the general case by Kresch in [46].

Thus every pair of rational functions (f , g), as above, gives rise to a K1-chain with
trivial divisor. This suggests that one could view such K1-chains as being rationally
equivalent to zero, i.e. that one should extend the complex R(X) → Z(X) to the
left by

⊕
x k(x)∗ ⊗ k(x)∗, with “div” (f ⊗ g) = f |div(g) − g|div(f ). Since

“div” (f ⊗ g) = −“div” (g ⊗ f ) ,

it seems reasonable to impose the relation f ⊗ g + g ⊗ f = 0. Again it is natural
to ask what elements are obviously in the kernel of this map. An element f ⊗ g ∈
k(x)∗ ⊗ k(x)∗ such that f ≡ 1(modg), and g ≡ 1(modf ), will be in the kernel of the
map “div”, and the elements of k(x)∗ ⊗ k(x)∗ that we can be sure are of this type
are those of the form f ⊗ g with f + g = 1.

This leads naturally to the quotient of the exterior algebra
∧∗(F) =

⊕
n

∧n
Z F∗

(of F∗ viewed as aZ-module) by the two-sided ideal I generated by elements of the
form f ⊗ g with f + g = 1:

43Definition 43 If F is a field, its Milnor K-theory is defined to be:

KM
∗ (F) :=

∧∗
(F)|I .

Note that the relation {f , g} = −{g, f } ∈ KM
2 (F) can be deduced from the relation

{f , 1 − f } = 0, and hence one can equally write:

KM
∗ (F) := T∗(F)|I ,

where T∗(F) is the tensor algebra of F.

Rost’s Axiomatics 2.4.2

The fact that Milnor K-theory appears so naturally when trying to construct
a complex that computes the Chow groups is fully explored in the paper [58] of
Rost, where he proves that one need impose no more relations, or add any more
generators, to get a theory which has very nice properties.
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Rost considers a more general structure, which includes Milnor K-theory as
a special case.

44 Definition 44 A (graded) cycle module is a covariant functor M from the category
of fields (over some fixed base scheme S) to the category of Z-graded (or Z|2-
graded) Abelian groups, together with:
1. Transfers trE|F : M(E) → M(F), of degree zero, for every finite extension

F ⊂ E.
2. For every discrete valuation v of a field F a residue or boundary map ∂v :

M(F) → M(k(v)) of degree −1.
3. A pairing, for every F, F∗ × M(F) → M(F) of degree 1, which extends to

a pairing KM∗ (F) × M(F) → M(F) which makes M(F) a graded module over
the Milnor-K-theory ring.

These data are required to satisfy axioms which may be found in op. cit., Definitions
1.1 and 2.1.

A cycle module M is said to be a cycle module with ring structure if there is
a pairing M × M → M, respecting the grading, which is compatible with the cycle
module structure; see op. cit. Definition 1.2.

Milnor K-theory itself is a cycle module with ring structure. This follows from
results of Bass and Tate, of Kato, and of Milnor; see [58], theorem 1.4. We shall see
later (Theorem 65) that the same holds for the Quillen K-theory of fields.

45 Definition 45 Let X be a variety over a field. Then C∗(X, M, q) is the complex:

Cp(X, M, q) :=
⊕

x∈X(p)

Mq−p(k(x))

with the differential Cp(X, M, q) → Cp+1(X, M, q) induced by the maps ∂v :
Mq−p(k(x)) → Mq−p−1(k(v)) for each discrete valuation v of k(x) which is triv-
ial on the ground field. (Here, if k is a field, Mn(k) is the degree n component of
M(k).)

Similarly, one defines the homological complex:

Cp(X, M, q) :=
⊕

x∈X(p)

Mq−p(k(x)) .

These complexes are the “cycle complexes” associated to the cycle module M.
One then defines:

46 Definition 46
Ap(X, M, q) := Hp

(
C∗(X, M, q)

)

and
Ap(X, M, q) := Hp

(
C∗(X, M, q)

)
.
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It is easy to prove that the cohomological complex for Milnor K-theory is con-
travariant with respect to flat maps. To prove that the corresponding homological
complex is covariant with respect to proper maps, one uses Weil reciprocity for
curves, see [58], proposition 4.6.; a similar argument for Quillen K-theory is also
in [24]. Therefore the groups A∗(X, M, q) are contravariant with respect to flat
morphisms, while the groups A∗(X, M, q) are covariant with respect to proper
morphisms.

47Remark 47 One can consider bases more general than a field. In [58] Rost fixes
a base B which is a scheme over a field, and then considers schemes X of finite type
over B. More generally, it is easy to see that the homological theory can be defined
for schemes of finite type over a fixed excellent base B, so long as one grades the
complexes by dimB (see Definition 9).

Since, if F is a field, K1(F) = KM
1 (F) = F∗, and K0(F) = KM

0 (F) = Z, we see that the
last two terms in C∗(X, M, p) are the groups Rp−1(X) and Zp(X) of dimension p − 1
K1-chains and dimension p cycles on X. Therefore we have ([58], remark 5.1):

48Proposition 48 If M∗ is Milnor K-theory (or Quillen K-theory):

Ap(X, KM , −p) � CHp(X)

Ap(X, KM , p) � CHp(X) .

Rost shows:

49Theorem 49
1. For any M∗, the cohomology groups A∗(X, M, ∗) are homotopy invariant, i.e.,

for any flat morphism π : E → X with fibres affine spaces, π∗ : A∗(X, M, ∗) →
A∗(E, M, ∗) is an isomorphism.

2. For any M∗, if f : X → S is a flat morphism with S the spectrum of a Dedekind
domain Λ, and t is a regular element of Λ, there is a specialization map
σt : A∗(Xt , M, ∗) → A∗(X0, M, ∗), which preserves the bigrading. Here Xt =
X ×S Spec(Λ[1|t]) and X0 = X ×S Spec(Λ|(t)).

3. If M∗ is a cycle module with ring structure, and f : Y → X is a regular immer-
sion, then there is a Gysin homomorphism f ∗ : A∗(X, M, ∗) → A∗(Y , M, ∗).
This Gysin homomorphism is compatible with flat pull-back:
a) If p : Z → X is flat, and i : Y → X is a regular immersion, then p∗

X ·i∗ = i∗Z ·p∗,
where pX : X ×Y Z → X and iZ : X ×Y Z → Z are the projections in the
fiber product over Y .

b) If p : X → Y is flat, and i : Y → X is a section of p which is a regular
immersion, then i∗ · p∗ = 1∗

Y .
4. If M∗ is a cycle module with ring structure, and if X is a smooth variety over

a field, then there is a product structure on A∗(X, M, ∗).
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The map σt is the composition of the cup-product by {t} ∈ H1(Xt , O∗
X) (which is

defined since M∗ is a module over Milnor K-theory) with the boundary map in the
localization sequence for the open subset Xt ⊂ X with complement X0. See [58]
sect. 11, as well as [24], where a similar construction is used for the case when M∗
is Quillen K-theory. The construction of the Gysin map uses deformation to the
normal cone, specialization, and homotopy invariance. The product is constructed
as the composition of the external product A∗(X, M, ∗) × A∗(X, M, ∗) → A∗(X ×
X, M, ∗) with the Gysin morphism associated to the diagonal map ∆ : X →
X × X.

50 Corollary 50 For all p ≥ 0 and q ≥ 0, X �→ Ap(X, M, q) is a contravariant abelian
group valued functor on the category of smooth varieties over k.

Sketch of Proof
If f : X → Y is a map of smooth varieties over k, we can factor f = p · γf with
p : X ×k Y → Y the projection, and γf : X → X ×k Y the graph of f . We then
define f ∗ = (γf )∗ · p∗, where p∗ is defined since p is flat, and (γf )∗ is defined since
γf is a regular immersion. To prove that this is compatible with composition, one
uses parts a) and b) part 3 of the theorem.

More generally f ∗ can be defined for any local complete intersection morphism
between (not necessarily regular) varieties over k, using the methods of [20].

Let us write Mq for the sheaf X �→ A0(X, M, q) on the big Zariski site of regular
varieties over k. Rost also shows

51 Theorem 51 If X is the spectrum of regular semi-local ring, which is a localization
of an algebra of finite type over the ground field, then for all p, the complex
C∗(X, M, p) only has cohomology in degrees i = 0.

The proof is variation on the proofs of Gersten’s conjecture by Quillen [53] and
Gabber [19].

52 Corollary 52 If X is a regular variety over k, then Hp(C∗(X, M, q)) � Hp(X, Mq).

We then get immediately, the following variation on Bloch’s formula:

53 Corollary 53 For a variety X as above: CHp(X) � Hp(X, Mp).

Thus Rost’s paper shows us that one can construct intersection theory, together
with higher “rational equivalence”, i.e. the higher homology of the cycle complexes,
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building just on properties of divisors, and that Milnor K-theory arises naturally
in this process.

To construct Chern classes, we can follow the method of [24]. Start by observing
that since M∗ is a KM∗ -module, there are products

H1(X, O∗
X) ⊗ Ap(X, M, q) → Ap+1(X, M, q + 1) .

54Proposition 54 Let M∗ be a cycle module. Then if X is a variety over k, and
π : E → X is a vector bundle of constant rank n, there is an isomorphism
Ap(P(E), M, q) � ⊕n−1

i=0 Ap−i(P(E), M, q − i)ξi, where ξ ∈ H1(P(E), O∗
P(E)) is the

class of OP(E)(1).

Proof By a standard spectral sequence argument, this may be reduced to the case
when X is a point, and the bundle is trivial, so that P(E) � Pn. Let Pn−1 ⊂ Pn be
the hyperplane at infinity. It is easy to see that there is a short exact sequence:

0 → C∗(Pn−1, M, q − 1)[1] → C∗(Pn, M, q) → C∗(An, M, q) → 0 ,

which gives rise to a long exact sequence:

… → Ap−1(Pn−1, M, q − 1)
j∗→ Ap(Pn, M, q)

i∗→ Ap(An, M, q) → … ,

in which j∗ is the Gysin homomorphism, and i∗ is the pull back map associated
to the inclusion of the open subset i : An → P

n. Let π : Pn → Spec(k) be the
projection. By homotopy invariance, the map

(π · i)∗ : Ap(Spec(k), M, q) → Ap(An, M, q)

is an isomorphism, and so i∗ is a split monomorphism, while j∗ is a split epimor-
phism. Next, one may show that i∗ · i∗ : Ap(Pn, M, q) → Ap+1(Pn, M, q + 1) is the
same as cap product by ξ. Since i∗ is defined using deformation to the normal cone
this is not completely tautologous. The proof then finishes by induction on n.

One may now apply the axiomatic framework of [24], to obtain:

55Theorem 55 There is a theory of Chern classes for vector bundles, and also for
higher algebraic K-theory, on the category of regular varieties over k, with values
in Zariski cohomology with coefficients in the Milnor K-theory sheaf:

Cn : Kp(X) → Hn−p(X, KM
n )

which satisfies the properties of op. cit.
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These classes seem not to be in the literature, though they are known to the experts,
and they induce homomorphisms Kn(F) → KM

n (F) which are presumably the same
as the homomorphisms defined by Suslin in [65].

56 Remark 56 One can also construct the universal Chern classes Cp ∈ Hp(B·GLn, KM
p )

by explicitly computing Hp(B·GLn, KM
q ) for all p and all q. To do this one first com-

putes Hp(GLn, KM
q ), using the cellular decomposition of the general linear groups,

and then applies a standard spectral sequence argument, to get:

H∗(B·GLn, KM
∗ ) � KM

∗ (k)[C1, C2, …] .

Higher Algebraic K-Theory
and Chow Groups2.5

The connection between higher K-theory and Chow groups has at its root the
relationship between two different filtrations on the K-theory spectrum of a regular
scheme. One of these, the Brown filtration, is intrinsically functorial and compatible
with the product structure on K-theory. The other is the coniveau filtration, or
filtration by codimension, which is directly related to the Chow groups.

Gersten’s conjecture implies that there should be an isomorphism of the cor-
responding spectral sequences, and hence that these two different filtrations
of the K-theory spectrum should induce the same filtration on the K-theory
groups. At the E2 level, this isomorphism of spectral sequences includes Bloch’s
formula:

CHp(X) � Hp
(
X, Kp(OX)

)
.

The equality of these two filtrations on the K-theory groups tells us that, if
Gersten’s conjecture holds, then the product on the K-theory of a regular scheme
is compatible with the coniveau filtration. Recall that this compatibility implies
Serre’s conjecture on the vanishing of intersection multiplicities.

At the moment Gersten’s conjecture is only known for regular varieties over
a field. As we saw in the last section, one can also develop intersection theory for
smooth varieties over a field, using deformation to the normal cone. At the end of
this section, we use deformation to the normal cone to give a new proof, which does
not depend on Gersten’s conjecture, that the product on the K-theory of a smooth
variety is compatible with the coniveau filtration.

Stable Homotopy Theory2.5.1

Before discussing higher algebraic K-theory, we should fix some basic ideas of
stable homotopy theory and of the homotopy theory of presheaves of spectra.
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There are various versions of the stable homotopy category available, such as the
category of symmetric spectra of [40] and the category of S-modules of [16]. It is
shown in [60] that these are essentially equivalent.

For us, spectra have two advantages. The first is that cofibration sequences and
fibration sequences are equivalent (see Theorem 3.1.14 of [40]), and the second is
that the product in K-theory can be described via smash products of spectra. In
particular we will need the following lemma which gives information about the
stable homotopy groups of smash products:

57Lemma 57 Suppose that E and F are spectra with πi(E) = 0 if i < p and πi(F) = 0
if i < q. Then πi(E ∧ F) = 0 if i < p + q.

Proof This follows from the spectral sequence

Torπ∗(S)
(
π∗(E), π∗(F)

) ⇒ π∗(E ∧ F) ,

see [16], Chapt. II, Theorem 4.5.

Following the paper [41] of Jardine, the category of presheaves of spectra on (the
Zariski topology of) a scheme X may be given a closed model structure in the
sense of [54], in which the weak equivalences are the maps of presheaves which
induce weak equivalences stalkwise. See also the papers [10] of Brown and [11] of
Brown and Gersten, as well as [23].

If E is a presheaf of spectra on X, we define RΓ(X, E) to be Γ(X, Ẽ), where
i : E → Ẽ is a fibrant resolution of E, i.e., i is a trivial cofibration and Ẽ is fibrant.
If Y ⊂ X is a closed subset, or if Φ is a family of supports, we define RΓY (X, E)
and RΓΦ(X, E) similarly. By a standard argument, one can show that RΓ(X, E) is
a fibrant spectrum which is, up to weak equivalence, independent of the choice of
fibrant resolution.

One also defines

Hn(X, F) := π−n

(
RΓ(X, F)

)
,

and

Hn
Φ(X, F) := π−n

(
RΓΦ(X, F)

)
.

Note that these are abelian groups.
The reason for this notation is that if A is a sheaf of abelian groups on X

and Π(A, n) is the corresponding sheaf of Eilenberg-Maclane spectra, which has
πi(Π(A, n)) = A if i = n, and equal to 0 otherwise, we have:

Hp
(
X, Π(A, n)

) � Hn−p(X, A)

for n ≥ p.
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Filtrations on the Cohomology of Simplicial Sheaves2.5.2

If E is a spectrum, and F·E is a decreasing filtration of E by subspectra, there is an
associated spectral sequence with

E
p,q
1 = π−p−q(FpE|Fp+1E) .

See [23] for a detailed construction of this spectral sequence, and the associated
exact couple.

Given a scheme X satisfying our standard assumptions, and a presheaf of spectra
E on X, one can consider two different filtrations on RΓ(X, E).

The first is the “Brown” or hypercohomology filtration:

58 Definition 58 Let E be a fibrant simplicial presheaf on the scheme X. Let E(∞, k) ⊂
E be the sub-presheaf with sections over an open U ⊂ X consisting of those
simplices which have all of their faces of dimension less than k trivial. Since
the stalks of E are fibrant (i.e. are Kan simplicial sets), the stalk of E(∞, k)
at x ∈ X is the fibre of the map from Ex to the k-th stage of its Postnikov
tower.

If E = (Ei)i∈N is a fibrant presheaf of spectra, then we can define similarly its
Postnikov tower:

E(∞, k)i := Ei(∞, k + i) .

In either case, we set

Fk
BRΓ(E) := RΓ

(
X, E(∞, k)

)
,

and, if Φ is a family of supports on X,

Fk
BRΓΦ(E) := RΓΦ

(
X, E(∞, k)

)
.

Associated to this filtration we have a spectral sequence:

59 Proposition 59 If X is a scheme (which as usual, we assume to be finite dimen-
sional), and if E is a presheaf of connective spectra on X, there is a hypercohomology
spectral sequence:

E
p,q
1 = π−p−q

(
RΓ(X, E(p))

) � Hq
(
X, π−p(E)

) ⇒ Hp+q(X, E) .

Here E(p) denotes the cofiber of E(∞, p+1) → E(∞, p), which is weakly equivalent
to the presheaf of Eilenberg-Maclane spectra with homotopy groups πk(E(p)) =
πp(E) if k = p and 0 otherwise. This spectral sequence is concentrated in degrees
q ≤ 0 and 0 ≤ p ≤ dim(X).

More generally, if Φ is a family of supports on X, then we have

E
p,q
1 = π−p−q

(
RΓΦ(X, E(p))

) � H
q
Φ

(
X, π−p(E)

) ⇒ H
p+q
Φ (X, E) .
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Proof See [11] and [23].

60Definition 60 We shall refer to the spectral sequence of the previous proposition
as the Brown spectral sequence, and the corresponding filtration on the groups
H∗(X, E) and H∗

Φ(X, E) as the Brown filtration.

The second filtration on RΓ(X, E) is the coniveau filtration:

61Definition 61 Recall that ΓX≥k denotes sections with support of codimension at
least k; then we set, for E a presheaf either of connective spectra,

FkRΓ(E) := RΓX≥k (X, E) .

The resulting spectral sequence

E
p,q
1 = E

p,q
1,cod(X, E) � π−p−q(RΓX(p) (X, E)) ⇒ Hp+q(X, E)

converges to the coniveau filtration on H∗(X, E).
We can also require everything to have supports in a family of supports Φ:

Fk
codRΓΦ(E) := RΓX≥k∩Φ(X, E) ,

to obtain a spectral sequence:

E
p,q
1 = E

p,q
1,cod,Φ(X, E) � π−p−q

(
RΓX(p)∩Φ(X, E)

) ⇒ H
p+q
Φ (X, E) .

It was shown in [23] that these spectral sequences are related. First note that we
can renumber the Brown spectral sequence so that it starts at E2:

Ê
p,q
2 (X, E) := π−p−q

(
RΓ(X, E(−q))

)
.

62Theorem 62 With X and E as above, There is a map of spectral sequences, for
r ≥ 2,

Êp,q
r (X, E) → E

p,q
r,cod(X, E) ,

and more generally, given a family of supports Φ,

Ê
p,q
r,Φ(X, E) → E

p,q
r,cod,Φ(X, E) ,

Proof See [23], Theorem 2, Sect. 2.2.4. The proof there uses a generalization to
sheaves of simplicial groups of the techniques that Deligne used in a unpublished
proof of the analogous result for complexes of sheaves of abelian groups (see [9]).
There is a discussion of Deligne’s result in [51]. A key point in the proof is that



270 Henri Gillet

X − X≥p has dimension p − 1, so that Hi
X−X≥p (X, A) = 0 for all i ≥ q and any sheaf

of abelian groups A.

This theorem may be viewed as an analog, in the homotopy theory of simplicial
presheaves, of a result of Maunder [50], in which he compared the two different
ways of defining the Atiyah-Hirzebruch spectral sequence for the generalized
cohomology of a CW complex.

Looking at the map on E∞ terms, we get:

63 Corollary 63 With X and E as above,

FkH∗(X, E) ⊂ Fk
codH∗(X, E) ,

for all k ≥ 0. If Φ is a family of supports on X, then:

FkH∗
Φ(X, E) ⊂ Fk

codH∗
Φ(X, E) .

We shall see that for the algebraic K-theory of regular schemes over a field, as well
as other cohomology theories for which one can prove Gersten’s conjecture, that
these two spectral sequences are isomorphic, and hence the filtrations that they
converge to are equal.

Review of Basic Notions of K-Theory2.5.3

Recall that if E is an exact category the K-theory groups Kp(E), for p ≥ 0 of E
were originally defined by Quillen in [53], to be the homotopy groups πp+1(BQE)
of the classifying space of the category QE defined in op.cit. (Here one takes the
zero object of the category as a base point.)

An alternative construction, which gives a space which can be shown to be
a deformation retract of BQE , is Waldhausen’s S·-construction. This associates to
the exact category E a simplicial set S·E . The iterates of S·-construction then give
a sequence of deloopings Sk

· E of S·E . See Sect. 1.4 of the article of Carlsson in this
volume for details. It is straightforward to check that these deloopings may used to
define a symmetric spectrum which we will denote K(E), with K∗(E) � π∗(K(E)).
We may then think of K-theory as a functor from the category of exact categories
and exact functors to the category of spectra.

Any bi-exact functor Φ : A × B → C induces pairings

Sp
· (A) ∧ Sq

· (B) → Sp+q
· (C) ,

which are compatible with the actions of the relevant symmetric groups, and hence
induce a pairing:

K(Φ) : K(A) ∧ K(B) → K(C) .

If X is a scheme we can consider the abelian category M(X) of all coherent
sheaves on X, and the exact subcategory P (X) ⊂ M(X) of locally free coherent
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sheaves on X. We shall denote the K-theory spectra of these categories by G(X)
and K(X) respectively, and the K-theory groups by G∗(X) and K∗(X) respectively.
(Note that in [53], G∗(X) is written K ′∗(X).) These groups have the following basic
properties:

X �→ K∗(X) is a contravariant functor from schemes to graded (anti-)commu-
tative rings. See [53]. The product is induced by the bi-exact functor

P (X) × P (X) → P (X)

(F , G) �→ F ⊗OX G ,

which induces a pairing of spectra:

K(X) ∧ K(X) → K(X) .

X �→ G∗(X) is a covariant functor from the category of proper morphisms
between schemes to the category of graded abelian groups. The covariance of
G∗(X) is proved in [53] for projective morphisms, while for general proper
morphisms it is proved in [27] and [66].
G∗ is also contravariant for flat maps: if f : X → Y is a flat morphism, then
the pull-back functor f ∗ : M(Y) → M(X) is exact. More generally, G∗(X) is
contravariant with respect any morphism of schemes f : X → Y which is of
finite tor-dimension. This is proven in [53] when Y has an ample line bundle.
The general case may deduced from this case by using the fact that the pull
back exists locally on Y , since all affine schemes have an ample line bundle,
together with the weak equivalence G(Y) � RΓ(Y , GY ) discussed in Theorem 66
below. Alternatively, one may show that the pull-back for general f (of finite
tor-dimension) exists by the methods of Thomason [66].
There is a “cap product” K∗(X) ⊗ G∗(X) → G∗(X), which makes G∗(X)
a graded K∗(X)-module. If f : X → Y is a proper morphism of schemes,
then f∗ : G∗(X) → G∗(Y) is a homomorphism of K∗(Y)-modules, where G∗(X)
is a K∗(Y)-module via the ring homomorphism f ∗ : K∗(Y) → K∗(X). This fact
is known as the projection formula. The cap product is induced by the bi-exact
functor:

P (X) × M(X) → M(X)

(F , G) �→ F ⊗OX G ,

which induces a pairing of spectra:

K(X) ∧ G(X) → G(X) .

If X is regular, then the inclusion P (X) ⊂ M(X) induces an isomorphism on
K-theory, K∗(X) � G∗(X).

While X �→ K∗(X) is a functor, the operation X �→ P (X) is not a functor, since
given maps f : X → Y and g : Y → Z, the functors (g · f )∗ and f ∗ · g∗ are
only isomorphic, rather than equal. There are standard ways of replacing such
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a ‘pseudo’-functor or ‘lax’-functor by an equivalent strict functor; in this case
we can replace the category P (X) of locally free sheaves on X by the equiva-
lent category PBig(X) of locally free sheaves on the Big Zariski Site over X. An
object in this category consists of giving, for every morphism f : U → X,
a locally free sheaf Ff of OU -modules, and for every triple (f : U → X, g :
V → X, h : U → V) such that g · h = f , an isomorphism g∗ : g∗(Fh) → Ff .
These data are required to satisfy the obvious compatibilities. Then if F ∈
PBig(X), and f : Y → X is a morphism, (f ∗Fg), for g : U → Y is set equal
to Ff ·g . It is a straightforward exercise to show that X �→ PBig(X) is a strict
functor.

We may then view X �→ K(X) as a contravariant functor from schemes to
spectra. When we restrict this functor to a single scheme X, we get a presheaf of
spectra which we denote KX . Similarly we have the presheaf GX associated to G
theory, together with pairings of presheaves:

KX ∧ KX → KX

KX ∧ GX → GX .

64 Definition 64 Let X be a scheme. Given an open subset U ⊂ X, we define K(X, U)
to be the homotopy fibre of the restriction K(X) → K(U). If Y ⊂ X is a closed
subset, then we also write KY (X) = K(X, X − Y), and K∗(X, U), KY∗ (X), for the
corresponding groups.

We can perform similar constructions for G-theory. However by Quillen’s local-
ization and dévissage theorems ([53]) if i : Y → X is the inclusion of a closed
subset of a scheme X, with its structure as a closed reduced subscheme, the ex-
act functor i∗ : M(Y) → M(X) induces a map i∗ : G(Y) → GY (X) which is
a homotopy equivalence. More generally, if Φ is any family of supports on X,
then GΦ(X) � K(MΦ(X)), the K-theory of the category of coherent sheaves of
OX-modules with support belonging to Φ.

Quillen’s Spectral Sequence2.5.4

For a general noetherian scheme X, the exact category M(X) of coherent sheaves
of OX-modules has a decreasing filtration

M(X) = M≥0(X) ⊃ … ⊃ M≥i(X) ⊃ M≥i+1(X) ⊃ … ,

in which M≥i(X) is the Serre subcategory consisting of those sheaves which have
supports of codimension at least i. Applying the K-theory functor, we get a filtration
of the G-theory spectrum by

… ⊂ GX≥i+1
(X) ⊂ GX≥i

(X) ⊂ … ⊂ G(X) .
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We shall refer to the corresponding spectral sequence

E
p,q
1 (X) = π−p−q

(
GX≥p

(X)|GX≥p+1
(X)

)

�
⊕

x∈X(p)

K−p−q(k(x)) ⇒ F·
cod

(
K−p−q(X)

)
.

as the Quillen spectral sequence. The identification of the E
p,q
1 -term follows from

a combination of localization and dévissage; see [53] for details.
Observe that E

p,−p
1 (X) � Zp(X) and E

p−1,−p
1 (X) � Rp(X). One may also prove that

the differential E
p−1,−p
1 (X) → E

p,−p
1 (X) is simply the divisor map. Hence E

p,−p
2 (X) �

CHp(X).
Thus for each p ≥ 0, we get a complex R∗

q(X), which we shall call the Gersten
complex:

Rp
q(X) := E

p,−q
1 (X) =

⊕

x∈X(p)

Kq−p(k(x)) .

We may also filter the spectrum G(X) by dimension of supports:

… GX≤p−1
(X) ⊂ GX≤p (X) ⊂ … ⊂ G(X) .

The corresponding spectral sequence is:

E1
p,q(X) = πp+q

(
GX≤p (X)|GX≤p−1 (X)

)

�
⊕

x∈X(p)

Kp+q(k(x)) ⇒ F·
dimKp+q(X) .

We also have the corresponding homological Gersten complex:

Rp,q(X) := E1
p,q(X) .

Again, we have that E2
p,p � CHp(X).

If f : X → Y is a flat morphism, and Z ⊂ Y has codimension p, then f −1(Z)
has codimension p in X and hence f −1(Y≥p) ⊂ X≥p. If f is proper, and W ⊂ X
has dimension q, then f (W) has dimension at most q and hence f (X≤q) ⊂ Y≤q. It
follows that if f is flat, flat pull-back induces a map of coniveau spectral sequences,
and hence of Gersten complexes. If f is proper, then push-forward induces a map
of spectral sequences, and hence of Gersten complexes:

f∗ : R∗,q(X) → R∗,q(Y) .

Notice that this automatically gives the covariance of the Chow groups with respect
to proper maps.

One can extend these results to prove:



274 Henri Gillet

65 Theorem 65 Quillen K-theory of fields is a cycle module, and the Gersten com-
plexes are the associated cycle complexes.

Proof See [53], [62] and [24].

K-Theory as Sheaf Hypercohomology2.5.5

Recall that if X is a scheme, GX denotes the presheaf of G-theory spectra on X.

66 Theorem 66 If Y ⊂ X is a closed subset, the natural map

G(Y) � GY (X) → RΓY (X, GX) ,

is a weak homotopy equivalence.

Proof It is enough to prove that this is true for Y = X. The general result then
follows by comparing the fibration sequences:

GY (X) → G(X) → G(X − Y)

and

RΓY (X, GX) → RΓ(X, GX) → RΓ(X − Y , GX) � RΓ(X − Y , GX−Y ) .

The result for X is a consequence of the Mayer-Vietoris property of G-theory.
See [11].

67 Corollary 67 The Quillen spectral sequence for G∗(X) is the same as the coniveau
spectral sequence for the sheaf of spectra GX , and both converge to the coniveau
filtration on G-theory.

Let X be a scheme, and suppose that Y ⊂ X and Z ⊂ X are closed subsets. Then,
using the fact that smash products preserve cofibration sequences, one may easily
check that the K-theory product respects supports:

KY (X) ∧ KZ(X) → KY∩Z(X) .

When X is regular, then this may be identified with the pairing on generalized
sheaf cohomology:

RΓY (X, KX) ∧ RΓZ(X, KX) → RΓY∩Z(X, KX) .
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68Corollary 68 Let X be a scheme. Then the Brown spectral sequence

E
p,−q
2 (X, G) = Hp(X, Gq(OX)) ⇒ G−p−q(X)

determines a filtration F·(G∗(X)). By Corollary 63, we have an inclusion of filtra-
tions F·(Gi(X)) ⊂ F·

cod(Gi(X)).

When X is regular, we then get a filtration FkK∗(X), which we will still call the
Brown filtration, and which has nice properties:

69Theorem 69 Let X be a regular scheme. Then the Brown filtration on K(X) is
compatible with the product on K-theory, and is (contravariant) functorial in X.
I.e., if ∗ denotes the K-theory product,

FiKp(X)∗FjKq(X) ⊂ Fi+jKp+q(X)

and if Y and Z are closed subsets of X, then

FiKY ,p(X)∗FjKZ,q(X) ⊂ Fi+jKY∩Z,p+q(X) .

If f : X → Y is a map of regular schemes, and W ⊂ Y is a closed subset then

f ∗(FiKW ,p(Y)) ⊂ FiKf −1(W),p(X) .

Proof We have FiKp(X) = Image(H−p(X, KX(∞, i)) → H−p(X, KX)). Hence it
suffices to know that the map

KX(∞, i) ∧ KX(∞, j) → KX

induced by the K-theory product factors, up to homotopy, through KX(∞, i + j),
and this is a straightforward consequence of the universal coefficient theorem 57.

The compatibility of the filtration with pull-backs is a consequence of the func-
toriality of the Postnikov tower.

As we will see below Gersten’s conjecture implies that for a regular scheme X, the
Brown and coniveau filtrations coincide, and hence Gersten’s conjecture implies
that the coniveau filtration is multiplicative.

Gersten’s Conjecture, Bloch’s Formula
and the Comparison of Spectral Sequences 2.5.6

We have seen on that on a nonsingular variety, a divisor corresponds to an element
of H1(X, K1(OX)), which is determined by the local equations of the divisor. In
the seminal paper [8], Bloch showed that on a smooth algebraic surface, the fact
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that a point is given locally by a pair of equations could be used to provide an
isomorphism CH2(X) � H2(X, K2(OX)).

Quillen’s generalization of Bloch’s formula to all codimensions, starts from:

70 Conjecture 70: Gersten’s conjecture Suppose that R is a regular local ring. Then
for all i > 0, the map

M(i)(Spec(R)) ⊂ M(i−1)(Spec(R))

induces zero on K-theory.

71 Proposition 71 If Gersten’s conjecture holds for a given regular local ring R, then,
for all p, the following complex is exact:

0 → Kp(R) → Kp(F) → ⊕
x∈X(1)

Kp−1(k(x)) → … → Kp−dim(R)(k) → 0

Here X := Spec(R), while F and k are the fraction and residue fields of R respectively.

Note that this implies that CHp(Spec(R)) � 0, if p > 0, for R a regular local ring;
this is a conjecture of Fossum, [12].

72 Corollary 72 If X is regular scheme, and Gersten’s conjecture holds for all the local
rings on X, then the augmentation:

Kp(OX) → Rp,X

is a quasi-isomorphism, where Rp,X is the sheaf of Gersten complexes U �→ R∗
p(U).

Hence, since the Rp,X are flasque, we have Bloch’s formula:

Hp
(
X, Kp(OX)

) � Hp
(
R∗

p(X)
) � CHp(X) .

If Y ⊂ X is a subset of pure codimension r, then:

H
p
Y

(
X, Kp(OX)

) � H
p
Y

(
X, Rp,X

) � Hp−r
(
R∗

p−r(Y)
) � CHp−r(Y) .

Finally,

H
p
Y

(
X, Kq(OX)

) � 0

if p > q.

73 Theorem 73: Quillen, [53] If X is a regular variety over a field, then Gersten’s
conjecture is true for all the local rings on X.
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Gersten’s conjecture may be viewed as a “local” version of the moving lemma, and
versions of it play a key role elsewhere, such as in proving the local acyclicity of
the motivic cohomology complexes.

The key point in Quillen’s proof of Gersten’s conjecture is that if X is a regular
affine variety over a field k, then given a divisor D ⊂ X, and a point x ∈ D, the map
i : D ↪→ X is “homotopic” to zero in a neighborhood of x. Quillen uses a variant
of Noether normalization to show that there is a map U → A

d−1
k , with domain

an affine open U ⊂ X neighborhood of x, which is smooth and which has finite
restriction to D ∩ U . A variation on Quillen’s proof may be found in the paper [19]
of Gabber, where he proves Gersten’s conjecture for Milnor K-theory. See also [13].

74Corollary 74 If X is a regular variety of finite type over a field, and Φ is a family of
supports on X, then the map of Theorem 62 from the Brown spectral sequence to
the coniveau spectral sequence is an isomorphism from E2 onward, and hence the
Brown and the coniveau filtrations on the groups KΦ∗ (X) agree.

Proof See [27] and [23]. The key point is that the map on E2-terms: Ê
p,q
2,Φ(X) =

H
p
Φ(X, K−q(OX)) → E

p,q
2,cod,Φ(X) � H

p
Φ(X, R−q,X) is the same as the map induced by

the augmentation K−q(OX) → R−q,X .

Since, by Theorem 69, the Brown filtration is multiplicative, we get:

75Corollary 75 If X is a regular variety over a field, the coniveau filtration on K-theory
with supports is multiplicative.

We shall give another proof of this result in Sect. 2.5.11, using deformation to the
normal cone.

The Coniveau Spectral Sequence
for Other Cohomology Theories 2.5.7

We can replace the presheaf of spectra F in the previous section by a complex
of sheaves of abelian groups F ∗

X . Then the Brown spectral sequence is the stan-
dard hypercohomology spectral sequence, and one also has the coniveau spec-
tral sequence. In [9], Bloch and Ogus considered (graded) cohomology theories
X �→ F ∗

X (∗), satisfying suitable axioms, and showed that the analog of Gersten’s
conjecture holds in these cases. Examples of theories satisfying the Bloch-Ogus
axioms are étale cohomology (in which case the Brown spectral sequence is the
Leray spectral sequence for the map form the étale site to the Zariski site) and
Deligne-Beilinson cohomology ([5], see also [26]).
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If X �→ H∗(X, ∗) = H∗(X, F ∗
X (∗)) is a theory satisfying the axioms of Bloch

and Ogus, then the analog of Gersten’s conjecture implies that the E2 term of
the coniveau spectral sequence is isomorphic to Hp(X, Hq(∗)), where H∗(∗) is the
Zariski sheaf associated to X �→ Hq(X, ∗). Deligne then showed, in an unpublished
note:

76 Theorem 76 The coniveau and hypercohomology spectral sequences agree from
E2 on.

Proof A version of Deligne’s proof may be found in the paper [51]. In addition,
the proof in the paper [23] of the analogous result for K-theory, is based on the
methods of Deligne.

Compatibility with Products and Localized Intersections2.5.8

One of the great virtues of Bloch’s formula is that the K-cohomology groups have
a product structure, induced by the K-theory product.

Let us write η : CHp(X) → Hp(X, Kp(OX)) for the isomorphism induced by the
Gersten resolution of the K-theory sheaf. Grayson proved in [34],

77 Theorem 77 Let X be a smooth variety over a field k. If α ∈ Zp(X) and β ∈ Zq(X)
are two cycles which intersect properly, then

η(α)η(β) = (−1)
p(p−1)

2
q(q−1)

2 η(α.β)

where α.β is the product defined by using the intersection multiplicities of Serre,
(see Definition 26), and hence with the intersection product defined by Samuel.

Proof By additivity, one can reduce to the case in which α = [Y] and β = [Z], where
Y and Z are two integral subschemes of X which meet properly. From Quillen’s
proof of Gersten’s conjecture, we have:

H
p
Y

(
X, Kp(OX)

) � CH0(Y) = Z[Y] ,

H
q
Z

(
X, Kq(OX)

) � CH0(Z) = Z[Z] ,

and

H
p+q
Y∩Z

(
X, Kp+q(OX)

) � CH0(Y ∩ Z) =
⊕

S

Z ,

where the direct sum is over the irreducible components S of Y ∩ Z.
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Using the equality of the Brown and coniveau spectral sequences, Theorem 74,
we can identify these isomorphisms with the edge homomorphisms

H
p
Y

(
X, Kp(OX)

) → GrpKY
0 (X) = Z[OY ] ,

H
q
Z

(
X, Kq(OX)

) → GrqKZ
0 (X) = Z[OZ] ,

and

H
p+q
Y∩Z

(
X, Kp+q(OX)

) → Grp+qKY∩Z
0 (X) =

⊕

S

Z[OS] ,

in the Brown spectral sequences for K-theory with supports in Y , Z, and Y ∩ Z
respectively. By the multiplicativity of the Brown spectral sequence, these edge
homomorphisms are compatible with products, and so the product of the cycles
associated to the classes [OY ] and [OZ] maps to the cycle associated to the K-
theory product [OY ].[OZ], which is non other than the cycle defined using Serre’s
definition of intersection multiplicities.

The sign comes from the fact that the isomorphism

Ê
p,p
2,Y (X) � H2p

(
X, Kp(OX)[p]

)

preserves products, while the isomorphism

H2p
(
X, Kp(OX)[p]

) � Hp
(
X, Kp(OX)

)

only preserves products up to the factor (−1)
p(p−1)

2
q(q−1)

2 .

By Quillen’s proof of Bloch’s formula, if Y ⊂ X is a closed set, and X is equidimen-
sional of dimension n, then

CHn−p(Y) � H
p
Y

(
X, Kp(OX)

)
.

It follows that purely by the formalism of cohomology with supports, that we get
a product, for Y ⊂ X and Z ⊂ X closed subsets,

CHk(Y) × CHl(Z) → CHk+l−n(Y ∩ Z) ,

which may be shown to agree with the product with supports on Chow homology
constructed by Fulton and MacPherson ([17]). See [24] and [30].

Other Cases of Gersten’s Conjecture 2.5.9

For non-geometric regular local rings, the only case for which Gersten’s conjecture
is known is that of henselian discrete valuation rings Λ with finite residue field
k, a result due to Sherman ([63]). The idea of Sherman’s proof is that since the
general linear group of a finite field is finite, one can use Brauer lifting to show that
the restriction map

K∗(Λ) → K∗(k)
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is surjective. A variation of this is result is that if Λ is a discrete valuation ring,
the conjecture is true for K-theory with coefficients Z|n of order prime to the
characteristic of k ([29]). The proof depends on the result of Gabber ([18]), and of
Gillet and Thomason ([33]), that if R is a Henselian discrete valuation ring then
the restriction map

K∗(Λ,Z|n) → K∗(k,Z|n)

is an isomorphism.
If R is a regular local ring which is smooth over a discrete valuation ring Λ

with maximal ideal πΛ ⊂ Λ, then one can consider relative versions of Gersten’s
conjecture, in which one considers not all R-modules, but only those which are flat
over Λ. See [7], and [31], where it is shown that this “relative” version of Gersten’s
conjecture implies that Gersten’s conjecture is true for R if it is true for the discrete
valuation ring associated to the ideal πR.

Operations on the Quillen Spectral Sequence2.5.10

One can show that the λ-operations on K0 of Sect. 2.3.3 can be extended to the
higher K-theory of rings and of regular schemes (see the papers of Kratzer ([45])
and Soulé ([64])). Of particular use are the Adams operations ψp for p ∈ N.
These are defined as follows. For x ∈ K∗(X), consider the formal power series
λt(x) :=

∑
i tiλi(x) ∈ K∗(X)[[t]]. Then the ψi are defined by

d

dt

(
λt(x)

)
|λt(x) =

∞∑

k=1

(−1)k−1ψk(x)tk−1 .

One can show (op. cit.) that, if X is a regular scheme satisfying our standing
assumptions, then the action of the Adams operations on K∗(X)Q can be diago-
nalized, so that ψp acts with eigenvalue kp on a subspace which is isomorphic to
Grk

γ(K∗(X)Q ).
Note that if X is a variety over the finite field Fp, then the action of ψp on

K-theory is the same as the action induced by the Frobenius endomorphism of X.
The Adams operation act compatibly with supports and hence act on the Quillen
spectral sequence. Using a variant of the Riemann–Roch theorem for higher K-
theory of [24], Soulé (op. cit.) identified the action on the E2-term, and could thereby
deduce by weight considerations, that for a regular scheme, the differentials into
the E2

p,−p and E2
p,1−p terms are torsion, and therefore:

78 Theorem 78 If X is a regular scheme, there are isomorphisms, for all p ≥ 0:

CHp(X)Q � Grp
cod(K0(X))Q � Grp

γ(K0(X))Q .

This extends a result that was proved in SGA6 [2]; the first isomorphism was proved
in in op. cit. for smooth varieties over a field, see op. cit. Sect. 4.2 of expose é XIV,
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while the second was proved with the (unnecessary) assumption that there is an
ample invertible sheaf on X; see Theorem 40.

It is natural to ask what the relationship between the γ-filtration and the other
filtrations on higher K-theory is. In [23], we prove:

79Theorem 79 Let X be a variety over a field k. Then

Fp
γKm(X) ⊂ F

p−m
cod Km(X) .

Note that in [2], exposé X, Jussila proved:

80Theorem 80 Let X be a noetherian scheme. Then

Fp
γK0(X) ⊂ F

p
codK0(X) .

It is therefore natural to ask:

81Question 81 Can one extend Theorem 79 to the case of general noetherian
schemes?

While this would follow from Gersten’s conjecture, there may be other ways to
approach this problem, such as the construction of a filtration on the K-theory of
a regular ring constructed by Grayson ([35]) using commuting automorphisms,
which is conjecturally related to the γ-filtration.

The Multiplicativity of the Coniveau Filtration:
a Proof Using Deformation to the Normal Cone. 2.5.11

In this section we shall give a proof of the multiplicativity of the coniveau filtra-
tion on higher K-theory for arbitrary smooth varieties over a field which uses
deformation to the normal cone, rather than hypercohomology of sheaves.

Let X be a smooth variety over a field k. We can decompose the product on
K∗(X) into the composition of the external product:

� : K∗(X) ⊗ K∗(X) → K∗(X × X)

and pull-back via the diagonal map ∆ : X → X × X:

∆∗ : K∗(X × X) → K∗(X) .

82Lemma 82 The coniveau filtration is multiplicative with respect to the external
product.
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Proof The external product is induced by the bi-exact functor:

M(X) × M(X) → M(X × X)

(F , G) �→ F ⊗k G

Let πi : X × X → X, for i = 1, 2 be the two projections. Suppose that Y ⊂ X
and Z ⊂ X are closed subsets of X of codimensions p and q respectively. If F is
a coherent sheaf supported on Y , and G is a coherent sheaf supported on Z, then
F ⊗k G is supported on π−1

1 (Y) ∩ π−1
2 (Z), which has codimension p + q in X × X.

Hence the product� : (Gi(Y) ⊗ Gj(Z)) → K∗(X × X) factors through Gi+j(Y × Z),
and hence its image lies in Fp+qKi+j(X × X).

Therefore we need only show that pull back by the diagonal preserves the coniveau
filtration. More generally, we have:

83 Theorem 83 If f : Y ↪→ X is a regular immersion of schemes satisfying our
standing hypotheses, then f ∗(Fi

cod(Gp(X))) ⊂ Fi
cod(Gp(Y)).

Proof The pull back map f ∗ : G∗(X) → G∗(Y) is defined because f is a morphism
of finite Tor-dimension. However, it can also be constructed using deformation to
the normal bundle.

First we need two lemmas:

84 Lemma 84 Let f : X → Y be a flat morphism. Then

f ∗ (
Fp(Gq(Y))

) ⊂ F
p
cod(Gq(X)) .

Proof The pull-back map f ∗ is induced by the exact functor f ∗ : M(Y) → M(X),
and if a coherent sheaf F on Y is supported on closed subset Z ⊂ Y of codimension
p, then f ∗(F ) is supported on f −1(Z) which has codimension p in X.

85 Lemma 85 Let p : N → Y be a vector bundle. Then the map p∗ : F
p
cod(Gq(Y)) →

F
p
cod(Gq(N)) is an isomorphism for all p and for all q.

Proof Since p is flat, the functor p∗ : M(X) → M(N) preserves codimension of
supports, and so we get a map of filtered spectra F∗G(X) → F∗G(E) which induces
a map

p∗ : Ep,q
r (X) → Ep,q

r (X)

of coniveau spectral sequences. However it is shown in [62] (and also [24]) that the
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cohomology of the E2 term of the Quillen spectral sequence is homotopy invariant,
and hence the coniveau filtration is homotopy invariant.

Consider the deformation to the normal cone space W := WY |X . Then we have
maps:
Pull Back π∗ : K∗(X) → K∗(W \ W0 � X ×Gm).
Specialization If t is the parameter onGm, i.e., the equation of the principal

divisor W0, then we have maps, for all p ≥ 0:

σt : Kp(W \ W0) → Kp(W0 � NY |X)

α �→ ∂(α∗{t})
Here ∂ is the boundary map in the localization sequence

… → Kp+1(W) → Kp+1(W \ W0)
∂→ Kp(W0) → … .

Homotopy Invariance If p : NY |X → Y is the projection, the pull back map
p∗ : K∗(Y) → K∗(NY |X) is an isomorphism.

86Proposition 86 With the notation above, we have

f ∗ = (p∗)−1 · σt · π∗ .

Proof See [24].

By Lemmas 84 and 85, π∗ and (p∗)−1 preserve the coniveau filtration. It remains to
show that the coniveau filtration is preserved by specialization.

Suppose that Z ⊂ X is a codimension p closed, reduced, subscheme. If we are
given an element α in Gp(X) which is supported on Z – i.e., its restriction to X − Z
vanishes, we know from the localization sequence that it is the image of an element
γ ∈ Gp(Z). It will be enough to show that σt(α) is supported on a closed subset of
codimension p in NY |X .

By Lemma 90 below, we know that the Zariski closure in W of Z × Gm ⊂
X ×Gm ⊂ W is isomorphic to the deformation to the normal cone space WZ|(Y∩Z)

associated to the subscheme Y∩Z ⊂ Z. Furthermore, the special fibre of WZ|(Y∩Z) is
the normal cone CZ|(Y∩Z) ⊂ NY |X , which has codimension p in the normal bundle.

Since CZ|Y∩Z = WZ|Y∩Z ∩ NY |X , if we write j : WZ|Y∩Z → WY |X for the inclusion,
j∗ induces a map of localization sequences, and in particular a commutative square:

Gp+1(Z ×Gm) ��
∂

��
j∗

Gp(CZ|Y∩Z)

��
j∗

Gp+1(X ×Gm) ��
∂

Gp(NY |X) .
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By the projection formula, we also have a commutative square:

Gp(Z ×Gm) ��
∗{t}

��
j∗

Gp+1(Z ×Gm)

��
j∗

Gp(X ×Gm) ��
∗{t}

Gp+1(X ×Gm) .

Putting these together, we get a commutative diagram:

Gp(Z ×Gm) ��
σt

��
j∗

Gp(CZ|Y∩Z)

��
j∗

Gp(X ×Gm) ��
σt

Gp(NY |X) ,

as desired. Hence σt(α) ∈ j∗(Gp(CZ|Y∩Z)) ⊂ F
p
cod(Gp(NY |X)).

This completes the proof of the proposition, and hence of Theorem 35.

Since every regular variety over a field is a localization of smooth variety over the
prime field, it also follows that the theorem is true for regular varieties.

A similar reduction to the diagonal argument may also be used to prove the
theorem for schemes which are smooth over the spectrum of a discrete valuation
ring.

Bloch’s Formula and Singular Varieties2.6

Cohomology Versus Homology2.6.1

If X is a general CW complex which is not a manifold, it will no longer be the
case that there is a Poincaré duality isomorphism H∗(X,Z) � H∗(X,Z). If X is
a singular variety, the Chow groups of cycles modulo rational equivalence are
analogous (even when graded by codimension) to the singular homology of a CW
complex. It is natural to ask if there is appropriate theory of Chow cohomology.

One answer to this question is given by Fulton in his book [17], in which he
defines the cohomology groups to be the operational Chow groups CH∗

op(X). An
element α ∈ CHp

op(X) consists, essentially, of giving homomorphisms, for every
map f : Y → X of varieties and every q ≥ 0, ∩α : CHq(Y) → CHq−p(Y), which
satisfy various compatibilities. Fulton’s operational groups are the target of a theory
of Chern classes for vector bundles, and any regularly immersed codimension p
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closed subscheme Y ⊂ X has a cycle class [Y] ∈ CHp
op(X). (The existence of

this class uses deformation to the normal bundle.) Any Chow cohomology theory
that has reasonable properties, in particular that contains Chern classes for vector
bundles, and which has cap products with Chow homology for which the projection
formula holds, will map to the operational groups. However the operational groups,
while they have many virtues, also miss some information. For example, if X is
a nodal cubic curve over a field k, one can prove that CH1

op(X) � Z. However the
group of Cartier divisors is isomorphic to Z⊕ k∗, which carries more information
about the motive of X. Even if Pic(X) gave a “good” definition of codimension 1
Chow cohomology, it is not clear what should happen in higher codimensions –
i.e. is there a theory of codimension p “Cartier Cycles”?

It is natural to consider the groups Hp(X, Kp(OX)), because of Bloch’s formula
and by analogy with Pic(X) � H1(X, K1(OX)).

Arguments in favor of this choice are:
1. The functor X �→ ⊕

p Hp(X, Kp(OX)) is a contravariant functor from varieties
over a given field k to commutative graded rings with unit.

2. There are cap products Hp(X, Kp(OX)) ⊗ CHq(X) → CHq−p(X), which satisfy
the projection formula.

3. There are Chern classes for vector bundles: Cp(E) ∈ Hp(X, Kp(OX)), for E
is a vector bundle on X, which are functorial and satisfy the Whitney sum
formula for exact sequences of bundles.

4. Any codimension p subscheme Y ⊂ X of a which is a local complete intersec-
tion has a fundamental class [Y] ∈ Hp(X, Kp(OX)).

This approach to Chow cohomology is developed in [24] and [25].
A strong argument against this choice is that these groups (including Pic(X),

see [69]) are not homotopy invariant.
One way to get a homotopy invariant theory, if the ground field k has characteris-

tic zero, is given a singular variety X, to take a nonsingular simplicial hyperenvelope
X̃· → X (see Appendix 2.8) and take Hp(X̃·, Kp(OX̃· )) (or Hp(X̃·, KM

p )) as the defi-
nition of Chow cohomology. One can show (at least for the usual K-cohomology,
see op. cit.) that these groups are independent of the choice of hyperenvelope, are
homotopy invariant, will have cap products with the homology of the Gersten
complexes, and will be the target of a theory of Chern classes.

Given a variety X and a nonsingular simplicial hyperenvelope X̃· → X there
will be, for each q ≥ 0, a spectral sequence:

E
i,j
1 = Hi

(
X̃j, Kq(OX̃j

)
) ⇒ Hi+j

(
X̃·, Kq(OX̃· )

)
.

One can show, by the method of [27], that the E2 term of this spectral sequence
is independent of the choice of hyperenvelope, and hence gives a filtration on the
groups Hp(X̃·, Kq(OX̃· )). This filtration is a K-cohomology version of the weight
filtration of mixed Hodge theory.

Note that if X is a (projective) nodal cubic, and X̃· → X is a hyperenvelope, then

H1
(
X̃·, K1(OX̃· )

) � Pic(X) ,
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while if X is a cuspidal cubic, then

H1
(
X̃·, K1(OX̃· )

) � Z ≠ Pic(X) .

It follows from the following theorem that the weight zero part of these groups
are Fulton’s operational Chow groups:

87 Theorem 87: Kimura, [42] Let X be variety over a field. Given nonsingular en-
velopes p0 : X̃0 → X and p1 : X̃1 → X̃0 ×X X̃0 we have an exact sequence:

0 → CHp
op(X)

p∗
0→ CHp(X̃0)

δ→ CHp(X̃1) ,

where δ = p∗
1(π∗

1 − π∗
0), with πi : X̃0 ×X X̃0 → X̃0 the projections.

Local Complete Intersection Subschemes
and Other Cocyles2.6.2

If X is a scheme, we know that any subscheme the ideal of which is generated locally
by nonzero divisors defines a Cartier divisor and is a “codimension 1” cocycle.
What about higher codimension?

Let Y ⊂ X be a codimension p regularly immersed subscheme. Recall that there
is an operational class [Y]op ∈ CHp

op corresponding to the “pull-back” operation
constructed using deformation to the normal cone.

88 Theorem 88: [25] Let X be a variety over a field k, and suppose that Y ⊂ X is
closed subscheme which is a codimension p local complete intersection. Then there
is a natural class [Y] ∈ Hp(X, Kp(OX)), such that cap product with [Y] induces the
operational product by [Y]op.

Idea of Proof
While the theorem is stated using K-cohomology, it really holds for almost any
cohomology theory constructed using sheaf cohomology, that has a theory of cy-
cle classes with supports. The key point is that for a given p > 0, there is a pair
of simplicial schemes V· ↪→ U· smooth over the base, which is a “universal”
codimension p local complete intersection. That is, given Y ⊂ X, a codimen-
sion p local complete intersection, there is a Zariski open cover W of X, and
a map of simplicial schemes η : N·(W) → U. such that η−1(V .) = Y ∩ N.(W).
Then one may construct a universal class in α ∈ H

p
V .(U., Kp(OV .)), and define

[Y] := η∗(α).

The same principle also is true for codimension 2 subschemes Y ⊂ X for which
the sheaf of ideals IY |X is locally of projective dimension 2. Such ideals are deter-
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minantal, i.e., locally they are generated by the maximal minors of an n × (n − 1)
matrix.

Chow Groups of Singular Surfaces 2.6.3

Bloch’s formula for codimension two cycles on a singular surface over a field, at
least if it has isolated singularities, is fairly well understood, thanks to the work of
Collino, Levine, Pedrini, Srinivas, Weibel, and others.

In particular, if X is a reduced quasi-projective surface X over an algebraically
closed field k, Biswas and Srinivas, [6] have constructed a Chow ring

CH∗(X) = CH0(X) ⊕ CH1(X) ⊕ CH2(X)

satisfying the usual properties of intersection theory for smooth varieties. In par-
ticular, there are Chern class maps Ci : K0(X) → CHi(X) satisfying the Riemann–
Roch formula such that, if F0K0(X) denotes the subgroup generated by the classes
of the structure sheaves of smooth points of X, then C2 : F0K0(X) → CH2(X) is an
isomorphism, inverse (up to sign) to the cycle map CH2(X) → K0(X).

The definition of the group of 0-cycles modulo rational equivalence for a singular
variety X follows the one given by Levine and Weibel ([49]), i.e. as the Chow group
CH0(X, Y) of X relative to its singular locus Y . This is the group generated by
closed points on X − Y , with rational equivalence defined using rational functions
on Cartier curves, i.e. every point of Z ∩ Y lies in an open neighborhood U where
Z ∩ U is defined by a regular sequence. See also [52], [48].

Intersection Theory on Stacks 2.6.4

If X is a smooth Deligne Mumford stack over a field, then one can define Chow
groups CHp(X), where Zp(X) is the free abelian group on the reduced irreducible
substacks, and rational equivalence is defined using rational functions on sub-
stacks. Bloch’s formula remains true, though one is forced to take rational coeffi-
cients, and to replace the Zariski topology with the étale topology:

CHp(X)Q � H
p
ét

(
X, Kp(OX)

)
Q

.

This leads to a K-theoretic construction of an intersection product on X. See [28].
One should note that there are other approaches intersection theory on stacks,
using operational Chow groups, by Vistoli ([68]), Kresch ([47])and others.

If X is the coarse moduli space, or quotient, of the stack, then one can show that
the quotient map π : X → X induces an isomorphism:

π∗ : CH(X)Q → CH(X)Q ,

and hence a product structure on the Chow groups, with rational coefficients
of the singular variety X. This is analogous to the construction of the rational
cohomology ring of an orbifold.
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Deformation to the Normal Cone2.7

This section is based on the expositions in [17] and [67].

89 Definition 89 Let X be a scheme, satisfying our standing assumptions, and suppose
that Y ↪→ X, is a closed subscheme, defined by a sheaf of ideals I ⊂ OX . Let WY |X
be the scheme obtained by blowing upA1

X = Spec(OX[t]) with respect to the sheaf
of ideals (I, t) ⊂ OA 1

X
(i.e., along the subscheme Y × {0}), and then deleting the

divisor (isomorphic to the blow up of X along Y) which is the strict transform of
X × {0}.

Observe that t ∈ Γ(WY |X , OWY |X ) is a regular element and so defines a (princi-
pal effective Cartier) divisor WY |X,0 ⊂ WY |X , which is isomorphic to the nor-
mal cone CY |X = Spec(

⊕
n≥0 In|In+1). Also note that WY |X \ WY |X,0 � Gm,X =

Spec(OX[t, t−1]); we shall write π : Gm,X → X for the natural projection.
We write p : WY |X,0 = CY |X → Y for the natural projection.
If Y ↪→ X is a regular immersion, in the sense of EGA IV ([37]) 16.9.2, then

WY |X,0 = CY |X � NY |X is a vector bundle over Y .
There is a natural inclusion A1

Y ↪→ W , because Y × {0} is principal divisor
in A1

Y .

W0 � CY |X
� � �� WY |X Gm,X� �oo

Y
� � ��

��

OO

A
1
Y

��

OO

Gm,Y� �oo
��

OO

We will need the following lemma, which is a straightforward consequence of
the basic properties of blow-ups (see [39], II.7):

90 Lemma 90 Suppose that Z ⊂ X is a closed subscheme. Then WY∩Z|Z is a closed
subscheme of WY |X , indeed it is the strict transform of A1

Z ⊂ A1
Z with respect to

the blow up, and WY∩Z|Z ∩ WY |X,0 = WY∩Z|Z,0

Envelopes and Hyperenvelopes2.8

91 Definition 91 A map f : X → Y is said to be an envelope if it is proper and if
for every field F, X(F) → Y(F) is surjective – or equivalently, for every integral
subscheme Z ⊂ Y , there is an integral subscheme Z̃ ⊂ X such that f (Z̃) = Z, and
f |Z̃ → Z is birational.
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92Theorem 92 Suppose that resolution of singularities holds for the category of
varieties over the field k, Then, for every variety X over k, there is an envelope
p : X̃ → X with X̃ nonsingular.

Proof The proof is by induction on the dimension of X. If dim(X) = 0, then X is
already nonsingular. Suppose the theorem is true for all varieties of dimension less
than d > 0. If dim(X) = d, let p1 : X̃1 → X be a resolution of singularities of X such
that there is a subvariety Y ⊂ X such that p1 is an isomorphism over X − Y , with
dim(X) < d. By the induction hypothesis there is an envelope q : Ỹ → Y . Now set
X̃ := X̃1 � Y , and p := p1 � q.

93Definition 93 We say that a map of simplicial schemes f· : X· → Y· is hyperenvelope
if for all fields F, f·(F) : X·(F) → Y·(F) is a trivial Kan fibration between simplicial
sets. Alternatively, f· is a hypercovering in the topology for which envelopes are the
coverings. See [22] for more details.

It follows from Theorem 92 that if X is a variety over a field of characteristic zero,
then there is a non-singular hyperenvelope X̃· → X.

Notice that this argument also works for schemes of dimension d over a base S,
if resolution of singularities holds for such schemes.
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