Lecture 10 Smooth algebras and their Chow cohomology

10.1. Smooth algebras.

Remark 1. Let k be a field and let A and B be finite type k-algebras. If k is perfect, then regularity of A and B implies regularity of $A \otimes_k B$. In general, this is not the case: in fact, $A \otimes_k B$ need not even be reduced. Consider for example the imperfect field $k = \mathbf{F}_p(T)$ and the algebras $A = B = k(T^{1/p}) = k[X]/(X^p - T)$.

We introduce a closely related but slightly stronger notion, which will still be closed under tensor products.

Definition 2. Let k be a field and \overline{k} an algebraic closure. We say that a finite type k-algebra A is *smooth* if its extension of scalars $A \otimes_k \overline{k}$ is a regular ring.

Proposition 3. Let A be a k-algebra of finite type. If A is smooth, then it is regular. If k is perfect, then the converse also holds.

Definition 4. A homomorphism $\phi : A \to B$ of finite type k-algebras is smooth (of relative dimension d) if it is flat, and for every closed point $x \in |\text{Spec}(A)|$, $B \otimes_A \kappa(x)$ is a smooth $\kappa(x)$ -algebra (of dimension d).

Example 5. For every k-algebra A, the homomorphism $A \to A[T_1, \ldots, T_n]$ is smooth of relative dimension n. Indeed $A[T_1, \ldots, T_n] \otimes_A \kappa \simeq \kappa[T_1, \ldots, T_n]$ is of dimension n for every residue field κ .

Proposition 6.

(i) Let $A \to A'$ be a homomorphism of finite type k-algebras. Then for every smooth homomorphism $\phi : A \to B$ of relative dimension d, the extension of scalars $\phi' : A' \to B \otimes_A A'$ is smooth of relative dimension d.

(ii) Let $\phi : A \to B$ and $\psi : B \to C$ be smooth homomorphisms of finite type k-algebras, of relative dimensions d and e, respectively. Then the composite $\psi \circ \phi : A \to C$ is smooth of relative dimension d + e.

Corollary 7. For any two smooth k-algebras A and B, the tensor product $A \otimes_k B$ is smooth of dimension dim(A) + dim(B).

Proof. By the proposition, $k \to A \to A \otimes_k B$ is a smooth homomorphism. \Box

10.2. Chow cohomology.

Definition 8. Let k be a field and A a smooth k-algebra of finite type. Assume that $|\operatorname{Spec}(A)|$ is of pure dimension d. We define $\operatorname{CH}^{k}(A) := \operatorname{CH}_{d-k}(A)$ for every k, and refer to this as the kth Chow cohomology group of A.

Our next goal will be to define a product on the graded ring $CH^*(A) := \bigoplus_k CH^k(A)$, analoguous to cup products in singular cohomology.

10.3. Quasi-smooth homomorphisms.

Definition 9. Let $\phi : A \to B$ be a surjective ring homomorphism, with kernel I. We say that ϕ is quasi-smooth (of relative dimension -n) if for every point $x \in |\text{Spec}(B)|$, the ideal $I_{\phi^{-1}(\mathfrak{p}(x))} \subseteq A_{\phi^{-1}(\mathfrak{p}(x))}$ is generated by a Koszul-regular sequence (of length n), where $\mathfrak{p}(x) \subseteq B$ is the prime ideal corresponding to x.

Remark 10. Since we are only working with noetherian rings, ϕ is quasi-smooth iff it is a *local complete intersection homomorphism* (which is the same definition but where "Koszul-regular" is replaced by "regular").

Example 11. For any ring A and element $a \in A$, the A-algebra surjection $A[T] \rightarrow A$, $T \mapsto a$, is quasi-smooth of relative dimension -1. Indeed the ideal $\langle T - a \rangle$ is clearly generated by a non-zero-divisor.

Proposition 12.

(i) Let $A \to A'$ be a flat ring homomorphism. Then for every quasi-smooth surjection $\phi : A \to B$ of relative dimension -d, the extension of scalars $\phi' : A' \to B \otimes_A A'$ is a quasi-smooth surjection of relative dimension -d.

(ii) Let $\phi : A \to B$ and $\psi : B \to C$ be quasi-smooth surjections of relative dimensions -d and -e, respectively. Then the composite $\psi \circ \phi : A \to C$ is quasi-smooth of relative dimension -(d + e).

Proposition 13. Let $A \to B$ be a surjective homomorphism of smooth k-algebras. Then $A \to B$ is quasi-smooth of relative dimension -d, where $d = \dim(A) - \dim(B)$.

Corollary 14. Let A be a smooth algebra over a field k. Then the canonical ring homomorphism $\delta : A \otimes_k A \to A$ is a quasi-smooth surjection of relative dimension -d, where $d = \dim(A)$.

Proof. Clearly δ is surjective (with kernel generated by the elements $a \otimes 1 - 1 \otimes a$, for all $a \in A$). Since we know that $A \otimes_k A$ is a smooth k-algebra of dimension $2 \dim(A)$, the claim follows from the previous proposition.

10.4. Interlude: more on dimension. We need some more dimension theory. The following statement is a consequence of Krull's principal ideal theorem.

Proposition 15. Let A be a noetherian local ring with maximal ideal \mathfrak{m} . For any element $f \in \mathfrak{m}$, we have

 $\dim(\mathbf{A}/\langle f \rangle) \ge \dim(\mathbf{A}) - 1$

with equality if f is a non-zero-divisor.

The next statement follows from Noether normalization.

Proposition 16. Let k be a field and A an integral domain which is of finite type over k. Then we have

 $\dim(\mathbf{A}) = \operatorname{trdeg}_k(\operatorname{Frac}(\mathbf{A})),$

where trdeg denotes transcendence degree.

Proposition 17. Let A be an integral domain which is of finite type over k. Then $\dim(A) = \operatorname{codim}_{A}(\{x\})$, for any closed point $x \in |\operatorname{Spec}(A)|$.

Proposition 18. Let A and B be finite type k-algebras. Then $\dim(A \otimes_k B) = \dim(A) + \dim(B)$.

10.5. Proper intersections.

Lemma 19. Let k be a field and A a finite type k-algebra. Let I be an ideal such that $A \to A/I$ is a surjective quasi-smooth homomorphism of relative dimension -n. Let $V(\mathfrak{p})$ be an integral closed subset of dimension d. Then each irreducible component of the closed subset $V(I) \cap V(\mathfrak{p}) = V(I + \mathfrak{p})$ is of dimension $\ge d - n$.

Proof. By Exercise 2 on Sheet 9, dimension is "local" in the sense that $\dim(A) = \sup_{\mathfrak{m}} \dim(A_{\mathfrak{m}})$ where the supremum is taken over maximal ideals \mathfrak{m} . Therefore, we may as well replace A by $A_{\mathfrak{m}}$ to assume that A is a local ring and that the ideal I is generated by a Koszul-regular sequence (f_1, \ldots, f_n) with $f_i \in \mathfrak{m}$. By the implicit noetherian hypothesis, (f_1, \ldots, f_n) is then a regular sequence.

Let Y be an irreducible component of $V(I + \mathfrak{p})$. Let $y \in Y$ be a closed point that is not contained in any other component of $V(I + \mathfrak{p})$. Then by §10.4, both $\dim(V(I + \mathfrak{p}))$ and $\dim(Y)$ are equal to the codimension of $\{y\}$ in $V(I + \mathfrak{p})$. The latter is equal to $\dim((A/(I + \mathfrak{p}))_{\mathfrak{p}(y)})$ (Sheet 9, Exercise 2), where $\mathfrak{p}(y)$ is the prime (maximal) ideal corresponding to y. Thus we get

$$\dim(\mathbf{Y}) = \dim(((\mathbf{A}/\mathfrak{p})/\langle f_1, \dots, f_n \rangle)_{\mathfrak{p}(y)}) = \dim(((\mathbf{A}/\mathfrak{p})_{\mathfrak{p}(y)}/\langle f_1, \dots, f_n \rangle))$$

The same exercise gives similarly

$$d = \dim(\mathcal{V}(\mathfrak{p})) = \dim((\mathcal{A}/\mathfrak{p})_{\mathfrak{p}(y)}).$$

If $B = (A/\mathfrak{p})_{\mathfrak{p}(y)}$, the claim is now that $\dim(B/\langle f_1, \ldots, f_n \rangle) \ge \dim(B) - n$. Since the f_i form a regular sequence in B, the claim follows by induction from the n = 1 case (§10.4).

Proposition 20. Assume the field k is algebraically closed. Let A be a smooth k-algebra of dimension d. Let $V(\mathfrak{p})$ and $V(\mathfrak{q})$ be integral closed subsets of |Spec(A)| of dimensions m and n, respectively. Then every irreducible component of $V(\mathfrak{p}) \cap V(\mathfrak{q}) = V(\mathfrak{p} + \mathfrak{q})$ is of dimension $\geq m + n - d$.

Proof. Then the canonical map $\delta : A \otimes_k A \to A$ is a quasi-smooth surjection of relative dimension -d; let K be its kernel. The ideal $\mathfrak{r} = \mathfrak{p} \otimes_k A + A \otimes_k \mathfrak{q} \subset A \otimes_k A$ corresponds to the subset $V(\mathfrak{r}) \subset |\operatorname{Spec}(A \otimes_k A)|$, which is integral of dimension m + n since

$$(\mathbf{A} \otimes_k \mathbf{A})/(\mathfrak{p} \otimes_k \mathbf{A} + \mathbf{A} \otimes_k \mathfrak{q}) \simeq (\mathbf{A}/\mathfrak{p}) \otimes_k (\mathbf{A}/\mathfrak{q})$$

is an integral domain of dimension m + n (this requires that k is algebraically closed). Moreover, we have

$$(A \otimes_k A)/(K + \mathfrak{r}) \simeq A/(\mathfrak{p} + \mathfrak{q}).$$

Thus, the claim follows from the previous statement applied to the finite type k-algebra $A \otimes_k A$, with quasi-smooth surjection $\delta : A \otimes_k A \to A$ and integral subset $V(\mathfrak{r})$.

Remark 21. The argument used in the proof is called "reduction to the diagonal" (Serre). Geometrically, $\delta : A \otimes_k A \to A$ corresponds to the diagonal morphism $X \to X \times_k X$ of the k-scheme X = Spec(A). The isomorphism $(A \otimes_k A)/(K + \mathfrak{r}) \simeq A/(\mathfrak{p} + \mathfrak{q})$ can be written as

 $(A/\mathfrak{p} \otimes_k A/\mathfrak{q}) \otimes_{A \otimes_k A} A \simeq A/(\mathfrak{p} + \mathfrak{q}).$

This corresponds to the formula

$$(\mathbf{Y} \times_k \mathbf{Z}) \cap \Delta = \mathbf{Y} \cap \mathbf{Z},$$

where $Y = V(\mathfrak{p})$ and $Z = V(\mathfrak{q})$ and $\Delta = V(K) \subset X \times_k X$ is the image of the diagonal immersion.

Definition 22. Let A be a finite type k-algebra of dimension d. Let $Y = V(\mathfrak{p})$ and $Z = V(\mathfrak{q})$ be integral closed subsets of |Spec(A)| of dimensions m and n, respectively. We say that Y and Z intersect properly, or without excess, if every irreducible component of $Y \cap Z$ is of dimension $\leq m+n-d$. (An excess component is an irreducible component of dimension > m + n - d.)

Remark 23. If A is smooth and k is algebraically closed, then by the proposition, Y and Z intersect properly iff every irreducible component of $Y \cap Z$ is of dimension exactly m + n - d, i.e., iff $Y \cap Z$ is of pure dimension m + n - d.

10.6. Intersection products.

Construction 24. Let A be a smooth k-algebra of dimension d. Let $Y = V(\mathfrak{p})$ and $Z = V(\mathfrak{q})$ be integral subsets of |Spec(A)| of codimensions p and q, respectively. Assume that Y and Z intersect properly, so that $Y \cap Z$ is of pure dimension (d-p) + (d-q) - d = d - (p+q). We define the intersection product of [Y] and [Z] as the cycle

$$[\mathbf{V}(\mathbf{\mathfrak{p}})] \cup [\mathbf{V}(\mathbf{\mathfrak{q}})] = \sum_{i} (-1)^{i} [\mathrm{Tor}_{i}^{\mathbf{A}}(\mathbf{A}/\mathbf{\mathfrak{p}}, \mathbf{A}/\mathbf{\mathfrak{q}})]_{d-p-q}$$

in $CH_{d-p-q}(A) \simeq CH^{p+q}(A)$.

We will not prove the following (difficult) theorem.

Theorem 25. Let A be a smooth k-algebra. There exists an intersection product $\cup : \operatorname{CH}^p(A) \otimes \operatorname{CH}^q(A) \to \operatorname{CH}^{p+q}(A)$

that agrees with the above construction in case of proper intersections, and turns $CH^*(A)$ into a graded ring (associative, commutative, unital).

4