Lecture 7 Dévissage, localization and supports

7.1. Dévissage.

Construction 1. Let \mathcal{A} be an abelian category. Then $K_0(\mathcal{A})$ is the free abelian group on isomorphism classes of objects of \mathcal{A} , modulo the relations

$$[A] = [A'] + [A'']$$

for every short exact sequence $0 \to A' \to A \to A'' \to 0$ in \mathcal{A} .

Example 2. Let A be a noetherian ring. Then $K_0(Mod_A^{fg}) = G_0(A)$ by definition.

Definition 3. Let A be a ring and $I \subset A$ an ideal. An A-module M is called I^{∞} -torsion if it is I^k -torsion for some $k \ge 0$, i.e., $I^k M = 0$. If I is generated by a single element $f \in A$, we also use the term f^{∞} -torsion. Let $\operatorname{Mod}_A^{\operatorname{fg}}(I^{\infty})$ (resp. $\operatorname{Mod}_A^{\operatorname{fg}}(f^{\infty})$) denote the full subcategory of $\operatorname{Mod}_A^{\operatorname{fg}}$ spanned by I^{∞} -torsion modules (resp. f^{∞} -torsion modules).

Remark 4. Let A be a noetherian ring, $I \subset A$ an ideal, and $\phi : A \twoheadrightarrow A/I$ the quotient homomorphism. Then the restriction of scalars functor

$$(-)_{[A]}: \operatorname{Mod}_{A/I}^{\operatorname{fg}} \to \operatorname{Mod}_{A}^{\operatorname{fg}}$$

lands in the full subcategory $Mod_A^{fg}(I^{\infty})$. Indeed, we have $IM_{[A]} = 0$ for every A/I-module M.

Theorem 5 (Dévissage). Let A be a noetherian ring, $I \subset A$ an ideal, and $\phi : A \twoheadrightarrow A/I$ the quotient homomorphism. Then the restriction of scalars functor induces a canonical isomorphism

$$\phi_* : \mathrm{G}_0(\mathrm{A}/\mathrm{I}) \xrightarrow{\sim} \mathrm{G}_0(\mathrm{Mod}^{\mathrm{fg}}_{\mathrm{A}}(\mathrm{I}^\infty)).$$

Example 6. If I is a nil ideal, then every A-module M is I^{∞} -torsion, so $Mod_A^{fg}(I^{\infty}) = Mod_A^{fg}$. In that case, we recover the nil-invariance property proven in §6.4: $G_0(A/I) \xrightarrow{\sim} G_0(A)$.

Proof. Note that if M is I^k -torsion, then it admits a filtration

$$0 = \mathbf{I}^k \mathbf{M} \subset \mathbf{I}^{k-1} \mathbf{M} \subset \dots \subset \mathbf{I} \mathbf{M} \subset \mathbf{M}$$

whose successive quotients are I-torsion, hence are A/I-modules. Thus we may define an inverse map

$$[\mathbf{M}] \mapsto \sum_{i>0} [\mathbf{I}^{i}\mathbf{M}/\mathbf{I}^{i-1}\mathbf{M}].$$

The rest of the proof is the same as that of nil-invariance $(\S6.4)$.

7.2. Digression: quotients of abelian categories.

Definition 7. Let \mathcal{A} be an abelian category and \mathcal{B} a non-empty full subcategory. We say that \mathcal{B} is a *Serre subcategory* if, for any short exact sequence

$$0 \to \mathbf{A}' \to \mathbf{A} \to \mathbf{A}'' \to 0,$$

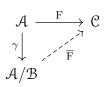
we have $A \in \mathcal{B}$ iff $A' \in \mathcal{B}$ and $A'' \in \mathcal{B}$. In other words, \mathcal{B} should be closed under subobjects, quotients, and extensions.

Remark 8. Note that if $\mathcal{B} \subseteq \mathcal{A}$ is a Serre subcategory, then it contains the zero object $0 \in \mathcal{A}$. Also, \mathcal{B} is abelian and the inclusion $\mathcal{B} \hookrightarrow \mathcal{A}$ is an exact functor.

Theorem 9. Let $\mathcal{B} \subseteq \mathcal{A}$ be a Serre subcategory. Then there exists a universal exact functor

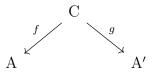
$$\gamma: \mathcal{A} \to \mathcal{A}/\mathcal{B}$$

with kernel B. Universality means that for any exact functor $F : A \to C$ with F(b) = 0 for all $b \in B$, there exists a unique exact functor $\overline{F} : A/B \to C$ making the triangle below commute.

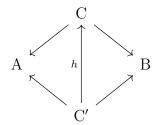


Construction 10. The quotient $\mathcal{A} \to \mathcal{A}/\mathcal{B}$ can be described as the localization (in the sense of Gabriel–Zisman) at the class of morphisms $f : \mathcal{A} \to \mathcal{A}'$ in \mathcal{A} with $\operatorname{Ker}(f) \in \mathcal{B}$ and $\operatorname{Coker}(f) \in \mathcal{B}$. We sketch a concrete construction.

The objects of \mathcal{A}/\mathcal{B} are the same as those of \mathcal{A} ; we write $\gamma(A) \in \mathcal{A}/\mathcal{B}$ for the object corresponding to an object $A \in \mathcal{A}$. Morphisms $\gamma(A) \to \gamma(A')$ are equivalences classes of diagrams in \mathcal{A}

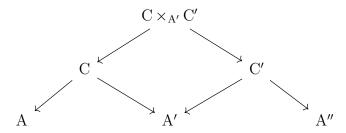


where f has kernel and cokernel in \mathcal{B} . Two such diagrams (A $\leftarrow C \rightarrow A'$) and (A $\leftarrow C' \rightarrow A'$) are equivalent if there exists a morphism $h : C' \rightarrow C$ making the diagram below commute.

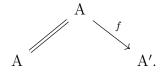


The composition law is defined as follows. Given two morphisms $\gamma(A) \to \gamma(A')$ and $\gamma(A') \to \gamma(A'')$, represented by diagrams $(A \leftarrow C \to A')$ and $(A' \leftarrow C' \to A'')$,

respectively, the composite $\gamma(A) \rightarrow \gamma(A'')$ is represented by



where the square in the middle is cartesian. The functor $\gamma : \mathcal{A} \to \mathcal{A}/\mathcal{B}$ acts on morphisms by sending $f : \mathcal{A} \to \mathcal{A}'$ to the equivalence class of the diagram



7.3. Localization. Let $\mathcal{B} \subseteq \mathcal{A}$ be a Serre subcategory. Let $\iota : \mathcal{B} \hookrightarrow \mathcal{A}$ be the inclusion and $\gamma : \mathcal{A} \to \mathcal{A}/\mathcal{B}$ the quotient functor. Both functors are exact and induce canonical homomorphisms

$$\iota_* : \mathrm{K}_0(\mathcal{B}) \to \mathrm{K}_0(\mathcal{A})$$

and

$$\gamma_* : \mathrm{K}_0(\mathcal{A}) \to \mathrm{K}_0(\mathcal{A}/\mathcal{B}).$$

Theorem 11. The sequence

$$\mathrm{K}_{0}(\mathcal{B}) \xrightarrow{\iota_{*}} \mathrm{K}_{0}(\mathcal{A}) \xrightarrow{\gamma_{*}} \mathrm{K}_{0}(\mathcal{A}/\mathcal{B}) \to 0$$

is exact.

Proof. Surjectivity of γ_* is clear since γ is the identity on objects. Note that $\gamma_*\iota_* = 0$ since $\gamma \circ \iota = 0$ by construction. Therefore there is a canonical morphism

 $\mathrm{K}_{0}(\mathcal{A})/\mathrm{K}_{0}(\mathcal{B}) := \mathrm{Coker}(\iota_{*}) \to \mathrm{K}_{0}(\mathcal{A}/\mathcal{B}).$

We claim that an inverse is given by the assignment

$$\gamma_*[\mathbf{A}] \mapsto [\mathbf{A}],$$

where $A \in \mathcal{A}$.

To show this is well-defined, we have to show that if $\gamma(A) \simeq \gamma(A')$ is an isomorphism in \mathcal{A}/\mathcal{B} , then [A] = [A'] in $K_0(\mathcal{A})/K_0(\mathcal{B})$. Such an isomorphism can be represented by a diagram

$$A \xleftarrow{f} C \xrightarrow{g} A^{*}$$

where f and g both have kernel and cokernel contained in \mathcal{B} . From the short exact sequences

$$0 \to \operatorname{Ker}(f) \hookrightarrow \mathcal{C} \twoheadrightarrow \operatorname{Im}(f) \to 0,$$

$$0 \to \operatorname{Im}(f) \hookrightarrow \mathcal{A} \twoheadrightarrow \operatorname{Coker}(f) \to 0,$$

we see that

$$[C] = [A] + [Ker(f)] - [Coker(f)] = [A'] + [Ker(g)] - [Coker(g)]$$

In particular, we deduce [A] - [A'] = 0 in $K_0(\mathcal{A})/K_0(\mathcal{B})$.

It remains to show that if

$$0 \to \gamma(\mathbf{A}') \xrightarrow{a} \gamma(\mathbf{A}) \xrightarrow{b} \gamma(\mathbf{A}'') \to 0$$

is a short exact sequence in \mathcal{A}/\mathcal{B} , then

$$[A] = [A'] + [A'']$$

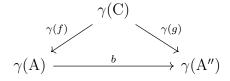
holds in $K_0(\mathcal{A})/K_0(\mathcal{B})$. Choose a diagram



representing the morphism b. As above, we have [C] = [A] + [Ker(f)] - [Coker(f)]in $K_0(\mathcal{A})$ and hence [C] = [A] in $K_0(\mathcal{A})/K_0(\mathcal{B})$ (since $Ker(f), Coker(f) \in \mathcal{B}$). Now consider the morphism g. Since γ is exact, there is an exact sequence

$$0 \to \gamma(\operatorname{Ker}(g)) \to \gamma(\operatorname{C}) \xrightarrow{\gamma(g)} \gamma(\operatorname{A}'') \to \gamma(\operatorname{Coker}(g)) \to 0.$$

Consider the commutative diagram



Since $\gamma(f)$ is an isomorphism and b is surjective, we deduce that $\gamma(g)$ is surjective. In particular, $\gamma(\operatorname{Coker}(g)) = 0$ and $\gamma(\operatorname{Ker}(g)) \simeq \gamma(A')$ in \mathcal{A}/\mathcal{B} . Thus by above it follows that $[\operatorname{Ker}(g)] = [A']$ in $\operatorname{K}_0(\mathcal{A})/\operatorname{K}_0(\mathcal{B})$. Finally we have

$$[A] = [C] = [A''] + [Ker(g)] - [Coker(g)] = [A''] + [A']$$

in $K_0(\mathcal{A})/K_0(\mathcal{B})$, as desired. This concludes the construction of the inverse map $K_0(\mathcal{A}/\mathcal{B}) \to K_0(\mathcal{A})/K_0(\mathcal{B})$, and hence the proof. \Box

Theorem 12. Let A be a noetherian ring and $f \in A$ an element. Then the extension of scalars functor $\operatorname{Mod}_{A}^{\operatorname{fg}} \to \operatorname{Mod}_{A[f^{-1}]}^{\operatorname{fg}}$ induces an equivalence of categories

$$\operatorname{Mod}_{\mathcal{A}}^{\operatorname{fg}}/(\operatorname{Mod}_{\mathcal{A}}^{\operatorname{fg}}(f^{\infty})) \to \operatorname{Mod}_{\mathcal{A}[f^{-1}]}^{\operatorname{fg}}$$

Proof. Exercise.

Corollary 13 (Localization theorem). Let A be a noetherian ring and $f \in A$ an element. Let $\phi : A \to A[f^{-1}]$ and $\psi : A \to A/\langle f \rangle$. Then there is an exact sequence

$$G_0(A/\langle f \rangle) \xrightarrow{\psi_*} G_0(A) \xrightarrow{\phi^*} G_0(A[f^{-1}]) \to 0$$

4

Proof. From the two previous theorems, we have the exact sequence

$$\mathrm{K}_{0}(\mathrm{Mod}_{\mathrm{A}}^{\mathrm{fg}}(f^{\infty})) \to \mathrm{G}_{0}(\mathrm{A}) \xrightarrow{\phi^{*}} \mathrm{G}_{0}(\mathrm{A}[f^{-1}]) \to 0.$$

The claim follows by combining this with the dévissage theorem (§7.1). \Box

Corollary 14. Let A be a regular ring and $f \in A$ an element. Let $\phi : A \to A[f^{-1}]$. Then there is an exact sequence

$$G_0(A/\langle f \rangle) \to K_0(A) \xrightarrow{\phi^*} K_0(A[f^{-1}]) \to 0,$$

where the first map is $G_0(A/\langle f \rangle) \to G_0(A) \simeq K_0(A)$.

Proof. Recall that $A[f^{-1}]$ is also regular (§2.3). Thus the claim follows by combining the previous Corollary with the comparison of K-theory and G-theory for regular rings (§5.3), and observing that $\phi^* : K_0(A) \to K_0(A[f^{-1}])$ and $\phi^* : G_0(A) \to G_0(A[f^{-1}])$ are compatible with this comparison. \Box

7.4. Spectrum of a ring.

Definition 15. Let A be a commutative ring. The *underlying set of the Zariski* spectrum of A, denoted

 $|\operatorname{Spec}(A)|,$

is the set of equivalence classes of morphisms $A \to \kappa$, where κ is a field. Two morphisms $A \to \kappa_1$ and $A \to \kappa_2$ are equivalent if there exists a field κ_3 and a commutative square

$$\begin{array}{c} \mathbf{A} \longrightarrow \kappa_2 \\ \downarrow & \downarrow \\ \kappa_1 \longrightarrow \kappa_3. \end{array}$$

Example 16 (Fields). Let k be a field. Then |Spec(k)| is the set of equivalence classes $[k \to \kappa]$, where κ is a field. But every $k \to \kappa$ is equivalent to the identity $k \to k$, so $|\text{Spec}(k)| \simeq \{*\}$.

Example 17 (The dual numbers). Let k be a field and $A = k[\varepsilon]/\langle \varepsilon^2 \rangle$. The data of a field κ and a ring homomorphism $A \to \kappa$ is the same as that of a field extension κ/k and an element $x \in \kappa$ satisfying $x^2 = 0$. But then x = 0 necessarily. Thus every equivalence class $[A \to \kappa]$ is equal to $[A \to k]$, and we get $|\text{Spec}(A)| \simeq \{*\}$.

Example 18 (The integers). Since \mathbf{Z} is the initial commutative ring, specifying the data of a field κ and a ring homomorphism $\mathbf{Z} \to \kappa$ is the same as specifying the field κ . Moreover, $\mathbf{Z} \to \kappa$ factors through either \mathbf{Q} or \mathbf{F}_p , where p is a prime, depending on the characteristic of κ . Therefore we find

$$|\operatorname{Spec}(\mathbf{Z})| = \{ [\mathbf{Z} \to \mathbf{Q}] \} \cup \{ [\mathbf{Z} \to \mathbf{F}_p] \mid p \text{ prime} \}.$$

Example 19 (Polynomial rings). Let k be a field and A = k[T] the polynomial ring. The data of a field κ and a ring homomorphism $k[T] \to \kappa$ is the same as that of a field extension κ/k and an element $\alpha \in \kappa$. Moreover, the morphism $k[T] \to \kappa$

will factor through the subfield $k(\alpha) \subseteq \kappa$ generated by α , so $[A \to \kappa] = [A \to k(\alpha)]$. Therefore we have

 $\left|\operatorname{Spec}(k[\mathrm{T}])\right| = \left\{ [k[\mathrm{T}] \to k(\alpha)] \mid \kappa/k \text{ a field extension, } \alpha \in \kappa \right\}.$

We can say more. Either $k[T] \rightarrow k(\alpha)$ is injective or not injective, depending on whether α is transcendental or algebraic. In the first case, it factors through the field of fractions and induces an isomorphism $k(T) \simeq k(\alpha)$. In the second, it induces an isomorphism $k[T]/\langle f \rangle \simeq k(\alpha)$, where f is an (irreducible) minimal polynomial of α . Thus we can write

 $\left|\operatorname{Spec}(k[\mathrm{T}])\right| = \left\{ [k[\mathrm{T}] \to k(\mathrm{T})] \right\} \cup \left\{ [k[\mathrm{T}] \to k[\mathrm{T}]/\langle f \rangle] \mid f \text{ irred. polynomial} \right\}.$

If k is algebraically closed, then

 $\left|\operatorname{Spec}(k[\mathbf{T}])\right| = \left\{ [k[\mathbf{T}] \to k(\mathbf{T})] \right\} \cup \left\{ [k[\mathbf{T}] \xrightarrow{\mathbf{T} \mapsto \alpha} k] \mid \alpha \in k \right\}.$

Definition 20. A *point* p of a commutative ring A is an equivalence class $[A \to \kappa]$, i.e., an element $p \in |\text{Spec}(A)|$.

Definition 21. The residue field of a point p is a field $\kappa(p)$, together with a ring homomorphism $A \to \kappa(p)$, such that every homomorphism $A \to \kappa$ equivalent to p factors through $\kappa(p)$.

Remark 22. Let A be a ring. Let $\phi : A \to \kappa$ be a ring homomorphism with κ a field. Since κ is local, ϕ factors through a local homomorphism $A_{\mathfrak{p}} \to \kappa$, where $\mathfrak{p} = \text{Ker}(\phi)$. Since it kills the maximal ideal, it factors further through $\kappa(\mathfrak{p}) = A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}}$. Thus we have $[A \to \kappa] = [A \to \kappa(\mathfrak{p})]$ in |Spec(A)|. This shows that every point $p = [A \to \kappa]$ has a (unique) residue field $\kappa(p) = \kappa(\mathfrak{p})$ where $\mathfrak{p} = \text{Ker}(A \to \kappa)$.

Remark 23. Using the above remark, one can show that |Spec(A)| is in bijection with the set of prime ideals $\mathfrak{p} \subset A$.

Definition 24. A point $p \in |\text{Spec}(A)|$ is *closed* if the homomorphism $A \to \kappa(p)$ is surjective.

Definition 25. If A is an integral domain, a *generic point* is a point $\eta \in |\text{Spec}(A)|$ such that $A \to \kappa(\eta)$ is injective. From the universal property of the field of fractions $A \to \text{Frac}(A)$, it follows that $\kappa(\eta) = \text{Frac}(A)$. In particular A admits a unique generic point.

Example 26. Above we showed that the residue fields of the points of \mathbf{Z} are \mathbf{Q} and \mathbf{F}_p . All points are closed except the generic point $[\mathbf{Z} \to \mathbf{Q}]$. Similarly we saw that the residue fields of the points of k[T] are k(T) and k (when k is algebraically closed). All points are closed except the generic point $[k[T] \to k(T)]$.

Example 27. The definition of generic point could be made more generally, but it is not very useful when A is not an integral domain. For example, note that for $A = k[\varepsilon]/\langle \varepsilon^2 \rangle$ there is no injection $\phi : A \to \kappa$ where κ is a field. Indeed ϕ factors through $A \twoheadrightarrow k \to \kappa$ and the first map is not injective. Thus A admits no generic point (it has only a closed point $[A \twoheadrightarrow k]$).