Lecture 8 K-theory with supports and intersection numbers

8.1. Supports of modules.

Definition 1. Let A be a ring and $M \in Mod_A^{fg}$ a f.g. A-module. We say that M is *supported at* a point $p \in |Spec(A)|$ if

$$\mathcal{M} \otimes_{\mathcal{A}} \kappa(p) \neq 0.$$

We write $\operatorname{Supp}_A(M) \subseteq |\operatorname{Spec}(A)|$ for the subset of points at which M is supported.

Example 2. We have $\text{Supp}_A(A) = |\text{Spec}(A)|$.

Example 3. Let $I \subseteq A$ be an ideal. We write $V(I) := \text{Supp}_A(A/I)$. This is the set of points p such that $\kappa(p)/I\kappa(p) \neq 0$, i.e., $I \cdot \kappa(p) = 0$. This is equivalent to the condition that $A \to \kappa(p)$ factors through the quotient A/I. It follows that there is a canonical bijection

$$|\operatorname{Spec}(A/I)| \simeq V(I).$$

Remark 4. By Nakayama's lemma, $M \in Mod_A^{fg}$ is supported at a point p iff $M_{\mathfrak{p}} \neq 0$, where $\mathfrak{p} = Ker(A \rightarrow \kappa(p))$. In particular, $Supp_A(M)$ is empty iff M is zero.

Proposition 5.

(i) If $0 \to M' \to M \to M'' \to 0$ is a short exact sequence of f.g. A-modules, then $\operatorname{Supp}_A(M) = \operatorname{Supp}_A(M') \cup \operatorname{Supp}_A(M'')$.

(ii) Let M be a f.g. A-module. Suppose $M = \sum_i M_i$ for some family of submodules $(M_i)_i$. Then $Supp_A(M) = \bigcup_i Supp_A(M_i)$.

(iii) Let M and N be f.g. A-modules. Then $\operatorname{Supp}_A(M \otimes_A N) = \operatorname{Supp}_A(M) \cap \operatorname{Supp}_A(N)$.

Corollary 6. Let A be a noetherian ring and $M \in Mod_A^{fg}$. Recall that M admits a filtration $0 = M_0 \subset M_1 \subset \cdots \subset M_n = M$ where the successive quotients M_i/M_{i-1} , $1 \leq i \leq n$, are isomorphic to A/\mathfrak{p}_i where \mathfrak{p}_i are prime ideals. For any such filtration, we have

$$\operatorname{Supp}_{\mathcal{A}}(\mathcal{M}) = \bigcup_{i} \mathcal{V}(\mathfrak{p}_{i}).$$

Proposition 7.

(i) $V(\langle 0 \rangle) = |Spec(A)|$.

(ii) For any ideal I we have $V(I) = \emptyset$ iff $I = \langle 1 \rangle$.

(iii) For any two ideals I and J we have $V(I) \cap V(J) = V(I+J)$.

(iv) For any two ideals I and J we have $V(I) \cup V(J) = V(I \cap J) = V(IJ)$.

(v) For any ideal I we have V(I) = V(rad(I)), where $rad(I) \subseteq A$ denotes the radical of I.

Exercise 8. Let I and J be ideals of A. Then $V(I) \subseteq V(J)$ iff $J \subseteq rad(I)$.

Corollary 9. Let A be a commutative ring. The homomorphism $A \to A_{red}$ induces a bijection $|Spec(A)| \simeq |Spec(A_{red})|$.

Proof. We have
$$|\operatorname{Spec}(A)| = V(\langle 0 \rangle) = V(\operatorname{rad}(\langle 0 \rangle)) \simeq |\operatorname{Spec}(A/\operatorname{rad}(\langle 0 \rangle))|$$
. \Box

Corollary 10. Let M be a f.g. A-module. Then $\text{Supp}_A(M) = V(A/I)$, where $I = \text{Ann}_A(M)$ is the ideal consisting of $a \in A$ such that ax = 0 for all $x \in M$.

Proof. Choose an A-linear surjection $A^{\oplus n} \twoheadrightarrow M$, corresponding to elements $x_i \in M$. Then we have $M = \sum_i Ax_i$ so by the Proposition,

$$\operatorname{Supp}_{A}(M) = \bigcup_{i} \operatorname{Supp}_{A}(Ax_{i}).$$

Note that $Ax_i \simeq A/I_i$ where

$$I_i = Ann(x_i) = Ker(A \xrightarrow{x_i} M) \subseteq A.$$

Thus we have

$$\operatorname{Supp}_{\mathcal{A}}(\mathcal{M}) = \bigcup_{i} \mathcal{V}(\mathcal{I}_{i}) = \mathcal{V}(\mathcal{I})$$

by the Example above and the fact that $I = \bigcap_i I_i$.

Corollary 11. Let A be a noetherian ring and $M \in Mod_A^{fg}$. Then for any ideal $I \subseteq A$, we have $Supp_A(M) \subseteq V(I)$ iff M is I^{∞} -torsion.

Proof. Let $J = Ann_A(M)$. Then $Supp_A(M) = V(J)$, so the condition is equivalent to $V(J) \subseteq V(I)$. This is equivalent to $I \subseteq rad(J)$, and since A is noetherian, to $I^k \subseteq J$ for some $k \ge 0$. But this is the same as $I^k M = 0$.

8.2. G-theory with supports. We consider a variant of G-theory where the modules have prescribed support.

Construction 12. Let A be a noetherian ring and $Y \subseteq |Spec(A)|$ a subset. We denote by $G_0^Y(A)$ the free abelian group on isomorphism classes of f.g. A-modules M which are supported on Y, i.e., for which $Supp_A(M) \subseteq Y$, modulo relations given by short exact sequences.

Since M is supported on V(I) iff it is I^{∞}-torsion, G^{V(I)}₀(A) is just another notation for K₀(Mod^{fg}_A(I^{∞})). In particular, the dévissage isomorphism can be re-interpreted as the assertion that G-theory does not see the difference between the category of A/I-modules and that of A-modules supported on V(I) \simeq |Spec(A/I)|.

Corollary 13. Let A be a noetherian ring and I an ideal. Then we have a canonical isomorphism of abelian groups

$$G_0(A/I) \simeq G_0^{V(I)}(A).$$

8.3. K-theory with supports.

Definition 14. Let A be a ring. A perfect complex M_{\bullet} is supported at a point $p \in |\text{Spec}(A)|$ if at least one homology group $H_i(M_{\bullet})$ is supported at p. We let $\text{Supp}_A(M_{\bullet}) \subseteq |\text{Spec}(A)|$ denote the subset of points where M_{\bullet} is supported. By definition,

$$\operatorname{Supp}_{A}(M_{\bullet}) = \bigcup_{i \in \mathbf{Z}} \operatorname{Supp}_{A}(H_{i}(M_{\bullet}))$$

This is a finite union since M_{\bullet} is perfect.

Remark 15. The same definition also makes sense more generally for coherent complexes.

Remark 16. The support of M_{\bullet} only depends on its quasi-isomorphism class. In particular, M_{\bullet} has empty support iff it is acyclic.

Construction 17. Let A be a ring and $Y \subseteq |Spec(A)|$ a subset. Denote by $Perf_A^Y$ the category of perfect complexes M_{\bullet} whose support $Supp_A(M_{\bullet})$ is contained in Y. Denote by $K_0(Perf_A^Y)$, or simply $K_0^Y(A)$, the free abelian group on quasiisomorphism classes of perfect complexes $M_{\bullet} \in Perf_A^Y$, modulo relations given by exact triangles.

Proposition 18. Let A be a noetherian ring and $I \subseteq A$ an ideal. There is a canonical homomorphism

$$\mathrm{K}_0^{\mathrm{V}(I)}(\mathrm{A}) \to \mathrm{G}_0^{\mathrm{V}(I)}(\mathrm{A}) \simeq \mathrm{G}_0(\mathrm{A}/\mathrm{I})$$

which is an isomorphism if A is regular.

Proof. Let M_{\bullet} be a perfect complex supported on V(I). Then $H_i(M_{\bullet})$ is supported on V(I) for all *i*. Thus the homomorphism

$$\mathrm{K}_{0}^{\mathrm{V}(\mathrm{I})}(\mathrm{A}) \to \mathrm{K}_{0}(\mathrm{A}) \to \mathrm{G}_{0}(\mathrm{A})$$

sending $[M_{\bullet}] \mapsto \sum_{i} (-1)^{i} [H_{i}(M_{\bullet})]$, factors through $G_{0}^{V(I)}(A)$ and induces a homomorphism

$$\mathrm{K}_0^{\mathrm{V}(\mathrm{I})}(\mathrm{A}) \to \mathrm{G}_0^{\mathrm{V}(\mathrm{I})}(\mathrm{A}) \simeq \mathrm{G}_0(\mathrm{A}/\mathrm{I})$$

via the dévissage isomorphism $(\S8.4)$.

If A is regular, then for every $M\in Mod_{A/I}^{fg},\,M_{[A]}\in Mod_A^{fg}$ is perfect. Thus there is a map

$$G_0(A/I) \rightarrow K_0(Perf_A) \simeq K_0(A).$$

By methods that we are by now familiar with, one checks that this is well-defined and is inverse to the map in question. $\hfill \Box$

4

8.4. Cup products in G-theory.

Remark 19. Let A be a *regular* ring. Via the canonical "Poincaré duality" isomorphism

$$K_0(A) \simeq G_0(A)$$

the abelian group $G_0(A)$ inherits a product. To describe it explicitly, recall that there is an isomorphism

$$G_0(A) \xrightarrow{\sim} K_0(Perf_A)$$

given by $[M] \mapsto [M[0]]$ (see the proof of the Theorem in §5.3). Its inverse is given by $[M_{\bullet}] \mapsto \sum_{i} (-1)^{i} [H_{i}(M_{\bullet})]$. The product on the ring $K_{0}(\operatorname{Perf}_{A})$ (see §6.1) is computed by the derived tensor product. Thus for $M, N \in \operatorname{Mod}_{A}^{\operatorname{fg}}$, the product $[M] \cup [N] \in G_{0}(A)$ is computed by the formula

$$[\mathbf{M}] \cup [\mathbf{N}] = \sum_{i \ge 0} (-1)^i [\mathbf{H}_i(\mathbf{M} \otimes^{\mathbf{L}}_{\mathbf{A}} \mathbf{N})] = \sum_{i \ge 0} (-1)^i [\operatorname{Tor}_i^{\mathbf{A}}(\mathbf{M}, \mathbf{N})].$$

In particular, when the higher Tors vanish, we have:

Proposition 20. Let A be a regular ring. Let I and J be ideals such that the square

$$\begin{array}{c} A & \longrightarrow & A/I \\ \downarrow & & \downarrow \\ A/J & \longrightarrow & A/I \otimes_A A/J \simeq A/(I+J) \end{array}$$

is Tor-independent (equivalently, $\operatorname{Tor}_{i}^{A}(A/I, A/J) = 0$ for all i > 0). Then we have

$$[A/I] \cup [A/J] = [A/(I+J)]$$

in $G_0(A)$.

Example 21. The Tor-independence condition holds when I is generated by a Koszul-regular sequence (f_1, \ldots, f_m) and J is generated by a Koszul-regular sequence (g_1, \ldots, g_n) such that $(f_1, \ldots, f_m, g_1, \ldots, g_n)$ is a Koszul-regular sequence. Indeed in that case we have quasi-isomorphism

$$A/I \otimes_{A}^{L} A/J \simeq \text{Kosz}_{A}(f_{i})_{i} \otimes_{A}^{L} \text{Kosz}_{A}(g_{j})_{j}$$
$$\simeq \text{Kosz}_{A}(f_{1}, \dots, f_{m}, g_{1}, \dots, g_{n})$$
$$\simeq A/(I + J).$$

The first quasi-isomorphism holds because of the Koszul-regularity of $(f_i)_i$ and $(g_j)_j$. The second is clear from the definition of the Koszul complex. The third holds because of the Koszul-regularity of $(f_1, \ldots, f_m, g_1, \ldots, g_n)$.

8.5. Cup products in K-theory with supports.

Lemma 22. Let A be a noetherian ring and $M'_{\bullet} \to M_{\bullet} \to M''_{\bullet}$ an exact triangle of coherent complexes. If any two of these three complexes is supported on a subset $Y \subseteq |Spec(A)|$, then so is the third.

Proof. By rotating the triangle, we can assume without loss of generality that M'_{\bullet} and M''_{\bullet} are the complexes supported on Y (note that shifting a complex has no effect on its support).

Consider the long exact sequence in homology.

$$\cdots \xrightarrow{\partial} \mathrm{H}_{i}(\mathrm{M}'_{\bullet}) \xrightarrow{\phi} \mathrm{H}_{i}(\mathrm{M}_{\bullet}) \xrightarrow{\psi} \mathrm{H}_{i}(\mathrm{M}''_{\bullet}) \xrightarrow{\partial} \cdots$$

From the short exact sequence

$$0 \to \operatorname{Im}(\phi) \hookrightarrow \operatorname{H}_i(\operatorname{M}_{\bullet}) \twoheadrightarrow \operatorname{Im}(\psi) \to 0$$

we see that $\operatorname{Supp}_{A}(\operatorname{H}_{i}(\operatorname{M}_{\bullet})) = \operatorname{Supp}_{A}(\operatorname{Im}(\phi)) \cup \operatorname{Supp}_{A}(\operatorname{Im}(\psi))$. Since $\operatorname{Im}(\psi) \subseteq \operatorname{H}_{i}(\operatorname{M}_{\bullet}'')$ we have

 $\operatorname{Supp}_{A}(\operatorname{Im}(\psi)) \subseteq \operatorname{Supp}_{A}(\operatorname{H}_{i}(\operatorname{M}_{\bullet}'')) \subseteq Y.$

Similarly since $\text{Im}(\phi)$ is a quotient of $H_i(M'_{\bullet})$, we have

$$\operatorname{Supp}_{A}(\operatorname{Im}(\phi)) \subseteq \operatorname{Supp}_{A}(\operatorname{H}_{i}(\operatorname{M}_{\bullet}')) \subseteq \operatorname{Y}.$$

The claim follows.

Lemma 23. Let A be a noetherian ring. If M_{\bullet} is a coherent complex supported on a subset $Y \subseteq |Spec(A)|$ and N_{\bullet} is a coherent complex supported on $Z \subseteq |Spec(A)|$, then the derived tensor product

 $M_{\bullet} \otimes^{\mathbf{L}}_{A} N_{\bullet}$

is supported on $Y \cap Z$.

]

Proof. First suppose that M_{\bullet} and N_{\bullet} both have homology concentrated in degree zero. Then replacing M_{\bullet} by the quasi-isomorphic complex $H_0(M_{\bullet})[0]$, and similarly for N_{\bullet} , we reduce to the analogous question for finitely generated modules instead of coherent complexes. Thus let M and N be f.g. A-modules. For a prime ideal $\mathfrak{p} \subseteq A$, we have

$$\mathrm{H}_{i}(\mathrm{M}\otimes^{\mathbf{L}}_{\mathrm{A}}\mathrm{N})_{\mathfrak{p}}\simeq\mathrm{H}_{i}(\mathrm{M}_{\mathfrak{p}}\otimes^{\mathbf{L}}_{\mathrm{A}_{\mathfrak{p}}}\mathrm{N}_{\mathfrak{p}})$$

by exactness of localization. Thus we see that $H_i(M \otimes_A^L N)$ has support contained inside that of M and N, whence the claim.

Next suppose that M_{\bullet} is an arbitrary coherent complex but N_{\bullet} still has homology concentrated in degree zero. Again we reduce to considering $M_{\bullet} \otimes_{A}^{L} N$ for $M_{\bullet} \in$ Coh_A and $N \in Mod_{A}^{fg}$. We want to show that this is "good", where good means it has support contained in the support of M_{\bullet} and the support of N. Let [a, b] be the range where the homology of M_{\bullet} is concentrated. Recall the exact triangles

$$H_i(M_{\bullet})[i] \to \tau_{\leq i}(M_{\bullet}) \to \tau_{\leq i-1}(M_{\bullet})$$

for each *i*. These remain exact after applying $(-) \otimes_{A}^{\mathbf{L}} N$:

$$\mathrm{H}_{i}(\mathrm{M}_{\bullet})[i] \otimes_{\mathrm{A}}^{\mathbf{L}} \mathrm{N} \to \tau_{\leqslant i}(\mathrm{M}_{\bullet}) \otimes_{\mathrm{A}}^{\mathbf{L}} \mathrm{N} \to \tau_{\leqslant i-1}(\mathrm{M}_{\bullet}) \otimes_{\mathrm{A}}^{\mathbf{L}} \mathrm{N}.$$

For i = a, the right-most term is acyclic and $H_a(M_{\bullet})[a] \otimes_A^{\mathbf{L}} N \to \tau_{\leq a}(M_{\bullet}) \otimes_A^{\mathbf{L}} N$ is a quasi-isomorphism. By the first case above, $H_a(M_{\bullet})[a] \otimes_A^{\mathbf{L}} N$ is good. Hence so is $\tau_{\leq a}(M_{\bullet}) \otimes_A^{\mathbf{L}} N$. For any i, if $\tau_{\leq i-1}(M_{\bullet}) \otimes_A^{\mathbf{L}} N$ is good, then by the previous lemma it follows that $\tau_{\leq i}(M_{\bullet}) \otimes_A^{\mathbf{L}} N$ is also good. By induction we conclude

that $\tau_{\leq b}(M_{\bullet}) \otimes_{A}^{\mathbf{L}} N$ is good. This is quasi-isomorphic to $M_{\bullet} \otimes_{A}^{\mathbf{L}} N$ since M is *b*-coconnective. Thus $M_{\bullet} \otimes_{A}^{\mathbf{L}} N$ is good as desired.

Finally, one extends to any coherent complex N_{\bullet} by a symmetric argument. \Box

Construction 24 (Cup product with supports). It follows from the lemma that there is a canonical product

$$\cup: \mathrm{K}_0^{\mathrm{Y}}(\mathrm{A}) \otimes \mathrm{K}_0^{\mathrm{Z}}(\mathrm{A}) \to \mathrm{K}_0^{\mathrm{Y} \cap \mathrm{Z}}(\mathrm{A})$$

defined by $[M_{\bullet}] \otimes [N_{\bullet}] \mapsto [M_{\bullet} \otimes_{A}^{\mathbf{L}} N_{\bullet}].$

8.6. Intersection numbers.

Remark 25. Let A be a regular ring. Then via the isomorphisms $K_0^{V(I)}(A) \simeq G_0(A/I)$, for any ideal I, the cup product with supports induces a product of the form

$$G_0(A/I)\otimes G_0(A/J)\to G_0(A/(I+J)).$$

Remark 26. Let A be a noetherian local ring with maximal ideal \mathfrak{m} . Then there is a unique closed point $x \in |\text{Spec}(A)|$ (with residue field $\kappa(x) = A/\mathfrak{m}$). Then $V(\mathfrak{m}) = \{x\}$, so dévissage yields the isomorphism

$$\mathcal{G}_0^{\{x\}}(\mathcal{A}) \simeq \mathcal{G}_0(\kappa(x)) \simeq \mathbf{Z}.$$

Definition 27. Let A be a regular local ring. Let M and N be f.g. A-modules with supports V(I) and V(J), respectively, such that $V(I + J) = \{x\}$ (where x is the closed point). Consider the pairing

$$\chi_{\mathcal{A}} : \mathcal{G}_0(\mathcal{A}/\mathcal{I}) \otimes \mathcal{G}_0(\mathcal{A}/\mathcal{J}) \to \mathcal{G}_0(\mathcal{A}/(\mathcal{I}+\mathcal{J})) \simeq \mathcal{G}_0(\kappa(x)) \simeq \mathbf{Z}.$$

Consider the classes $[M] \in G_0^{V(I)}(A) \simeq G_0(A/I)$, $[N] \in G_0^{V(J)}(A) \simeq G_0(A/J)$. These give rise via χ_A to an integer $\chi_A(M, N) \in \mathbb{Z}$ called the *intersection multiplicity* of M and N.

Exercise 28. Let A be a noetherian local ring and $M \in Mod_A^{tg}$.

(i) Show that M is supported on $V(\mathfrak{m}) \simeq \{x\}$ iff it is of finite length.

(ii) Show that the isomorphism $G_0^{\{x\}}(A) \simeq \mathbb{Z}$ above sends $[M] \mapsto \ell_A(M)$, where $\ell_A(M)$ denotes the length of M.

(iii) If A is regular, show that the intersection multiplicity is computed by the formula

$$\chi_{\mathcal{A}}(\mathcal{M},\mathcal{N}) = \sum_{i} (-1)^{i} \ell_{\mathcal{A}}(\operatorname{Tor}_{i}^{\mathcal{A}}(\mathcal{M},\mathcal{N})).$$

(This is Serre's intersection number.)

6

8.7. Irreducible subsets of the Zariski spectrum.

Definition 29. Let A be a commutative ring. A *closed subset* of |Spec(A)| is a subset of the form V(I), where I is an ideal. An *irreducible closed subset* is a subset of the form V(I), where rad(I) is a prime ideal. An *integral closed subset* is a subset of the form V(\mathfrak{p}), where \mathfrak{p} is a prime ideal.

Example 30. Note that |Spec(A)| is irreducible (as a subset of itself) iff the nilradical is a prime ideal, i.e., iff A_{red} is an integral domain. Equivalently, A contains exactly one minimal prime ideal. In this case we also say that A is irreducible.

Definition 31. Note that every integral closed subset $V(\mathfrak{p})$ is contained in an integral closed subset $V(\mathfrak{q})$ where \mathfrak{q} is a *minimal* prime ideal. Subsets of the latter form are called *irreducible components* of |Spec(A)|.

Remark 32. Let $I \subseteq A$ be an ideal and consider the subset $V(I) \subseteq |Spec(A)|$. Via the canonical bijection $V(I) \simeq |Spec(A/I)|$, we can regard any subset $Y \subseteq V(I)$ as a subset of |Spec(A/I)|. We say Y is closed/integral/irreducible in V(I), or an irreducible component of V(I), if it is such as a subset of |Spec(A/I)|. Similarly we say a point $\eta \in V(I)$ is a generic point of V(I) if it is a generic point of |Spec(A/I)|.

Definition 33. The *codimension* of an irreducible closed subset $Y \subseteq |Spec(A)|$ is the maximal length n of a chain

$$\mathbf{Y} = \mathbf{Y}_0 \subsetneq \mathbf{Y}_1 \subsetneq \cdots \subsetneq \mathbf{Y}_n$$

of irreducible closed subsets of |Spec(A)|. More generally, if $Y \subseteq |\text{Spec}(A)|$ is a closed subset, we say that its codimension is the infimum of the codimensions of all irreducible closed subsets contained in Y. We denote this natural number by codim(Y), or $\text{codim}_A(Y)$ when there is potential ambiguity. We say Y is of *pure codimension n* if all its irreducible components are of codimension *n*.

Example 34. The irreducible subsets of codimension 0 are the irreducible components.