
Lecture 8
K-theory with supports and intersection numbers

8.1. Supports of modules.

Definition 1. Let A be a ring and M ∈ Modfg
A a f.g. A-module. We say that M

is supported at a point p ∈
∣∣Spec(A)

∣∣ if

M⊗A κ(p) 6= 0.

We write SuppA(M) ⊆
∣∣Spec(A)

∣∣ for the subset of points at which M is supported.

Example 2. We have SuppA(A) =
∣∣Spec(A)

∣∣.
Example 3. Let I ⊆ A be an ideal. We write V(I) := SuppA(A/I). This is the
set of points p such that κ(p)/Iκ(p) 6= 0, i.e., I ·κ(p) = 0. This is equivalent to the
condition that A→ κ(p) factors through the quotient A/I. It follows that there is
a canonical bijection ∣∣Spec(A/I)

∣∣ ' V(I).

Remark 4. By Nakayama’s lemma, M ∈ Modfg
A is supported at a point p iff

Mp 6= 0, where p = Ker(A → κ(p)). In particular, SuppA(M) is empty iff M is
zero.

Proposition 5.

(i) If 0→ M′ → M→ M′′ → 0 is a short exact sequence of f.g. A-modules, then
SuppA(M) = SuppA(M′) ∪ SuppA(M′′).

(ii) Let M be a f.g. A-module. Suppose M =
∑

i Mi for some family of submodules
(Mi)i. Then SuppA(M) =

⋃
i SuppA(Mi).

(iii) Let M and N be f.g. A-modules. Then SuppA(M ⊗A N) = SuppA(M) ∩
SuppA(N).

Corollary 6. Let A be a noetherian ring and M ∈ Modfg
A . Recall that M admits a

filtration 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M where the successive quotients Mi/Mi−1,
1 6 i 6 n, are isomorphic to A/pi where pi are prime ideals. For any such
filtration, we have

SuppA(M) =
⋃
i

V(pi).

Proposition 7.

(i) V(〈0〉) =
∣∣Spec(A)

∣∣.
(ii) For any ideal I we have V(I) = ∅ iff I = 〈1〉.
(iii) For any two ideals I and J we have V(I) ∩ V(J) = V(I + J).

(iv) For any two ideals I and J we have V(I) ∪ V(J) = V(I ∩ J) = V(IJ).

(v) For any ideal I we have V(I) = V(rad(I)), where rad(I) ⊆ A denotes the radical
of I.
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Exercise 8. Let I and J be ideals of A. Then V(I) ⊆ V(J) iff J ⊆ rad(I).

Corollary 9. Let A be a commutative ring. The homomorphism A � Ared

induces a bijection
∣∣Spec(A)

∣∣ ' ∣∣Spec(Ared)
∣∣.

Proof. We have
∣∣Spec(A)

∣∣ = V(〈0〉) = V(rad(〈0〉)) '
∣∣Spec(A/ rad(〈0〉))

∣∣. �

Corollary 10. Let M be a f.g. A-module. Then SuppA(M) = V(A/I), where
I = AnnA(M) is the ideal consisting of a ∈ A such that ax = 0 for all x ∈ M.

Proof. Choose an A-linear surjection A⊕n � M, corresponding to elements xi ∈ M.
Then we have M =

∑
i Axi so by the Proposition,

SuppA(M) =
⋃
i

SuppA(Axi).

Note that Axi ' A/Ii where

Ii = Ann(xi) = Ker(A
xi−→ M) ⊆ A.

Thus we have

SuppA(M) =
⋃
i

V(Ii) = V(I)

by the Example above and the fact that I =
⋂
i Ii. �

Corollary 11. Let A be a noetherian ring and M ∈ Modfg
A. Then for any ideal

I ⊆ A, we have SuppA(M) ⊆ V(I) iff M is I∞-torsion.

Proof. Let J = AnnA(M). Then SuppA(M) = V(J), so the condition is equivalent
to V(J) ⊆ V(I). This is equivalent to I ⊆ rad(J), and since A is noetherian, to
Ik ⊆ J for some k > 0. But this is the same as IkM = 0. �

8.2. G-theory with supports. We consider a variant of G-theory where the
modules have prescribed support.

Construction 12. Let A be a noetherian ring and Y ⊆
∣∣Spec(A)

∣∣ a subset. We

denote by GY
0 (A) the free abelian group on isomorphism classes of f.g. A-modules

M which are supported on Y, i.e., for which SuppA(M) ⊆ Y, modulo relations
given by short exact sequences.

Since M is supported on V(I) iff it is I∞-torsion, G
V(I)
0 (A) is just another notation

for K0(Modfg
A(I∞)). In particular, the dévissage isomorphism can be re-interpreted

as the assertion that G-theory does not see the difference between the category of
A/I-modules and that of A-modules supported on V(I) '

∣∣Spec(A/I)
∣∣.

Corollary 13. Let A be a noetherian ring and I an ideal. Then we have a
canonical isomorphism of abelian groups

G0(A/I) ' G
V(I)
0 (A).
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8.3. K-theory with supports.

Definition 14. Let A be a ring. A perfect complex M• is supported at a point
p ∈

∣∣Spec(A)
∣∣ if at least one homology group Hi(M•) is supported at p. We let

SuppA(M•) ⊆
∣∣Spec(A)

∣∣ denote the subset of points where M• is supported. By
definition,

SuppA(M•) =
⋃
i∈Z

SuppA(Hi(M•)).

This is a finite union since M• is perfect.

Remark 15. The same definition also makes sense more generally for coherent
complexes.

Remark 16. The support of M• only depends on its quasi-isomorphism class. In
particular, M• has empty support iff it is acyclic.

Construction 17. Let A be a ring and Y ⊆
∣∣Spec(A)

∣∣ a subset. Denote by PerfYA
the category of perfect complexes M• whose support SuppA(M•) is contained
in Y. Denote by K0(PerfYA), or simply KY

0 (A), the free abelian group on quasi-
isomorphism classes of perfect complexes M• ∈ PerfYA, modulo relations given by
exact triangles.

Proposition 18. Let A be a noetherian ring and I ⊆ A an ideal. There is a
canonical homomorphism

K
V(I)
0 (A)→ G

V(I)
0 (A) ' G0(A/I)

which is an isomorphism if A is regular.

Proof. Let M• be a perfect complex supported on V(I). Then Hi(M•) is supported
on V(I) for all i. Thus the homomorphism

K
V(I)
0 (A)→ K0(A)→ G0(A)

sending [M•] 7→
∑

i(−1)i[Hi(M•)], factors through G
V(I)
0 (A) and induces a homo-

morphism

K
V(I)
0 (A)→ G

V(I)
0 (A) ' G0(A/I)

via the dévissage isomorphism (§8.4).

If A is regular, then for every M ∈ Modfg
A/I, M[A] ∈ Modfg

A is perfect. Thus there
is a map

G0(A/I)→ K0(PerfA) ' K0(A).

By methods that we are by now familiar with, one checks that this is well-defined
and is inverse to the map in question. �
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8.4. Cup products in G-theory.

Remark 19. Let A be a regular ring. Via the canonical “Poincaré duality”
isomorphism

K0(A) ' G0(A),

the abelian group G0(A) inherits a product. To describe it explicitly, recall that
there is an isomorphism

G0(A)
∼−→ K0(PerfA)

given by [M] 7→ [M[0]] (see the proof of the Theorem in §5.3). Its inverse is given
by [M•] 7→

∑
i(−1)i[Hi(M•)]. The product on the ring K0(PerfA) (see §6.1) is

computed by the derived tensor product. Thus for M,N ∈ Modfg
A , the product

[M] ∪ [N] ∈ G0(A) is computed by the formula

[M] ∪ [N] =
∑
i>0

(−1)i[Hi(M⊗L
A N)] =

∑
i>0

(−1)i[TorAi (M,N)].

In particular, when the higher Tors vanish, we have:

Proposition 20. Let A be a regular ring. Let I and J be ideals such that the
square

A A/I

A/J A/I⊗A A/J ' A/(I + J)

is Tor-independent (equivalently, TorAi (A/I,A/J) = 0 for all i > 0). Then we have

[A/I] ∪ [A/J] = [A/(I + J)]

in G0(A).

Example 21. The Tor-independence condition holds when I is generated by
a Koszul-regular sequence (f1, . . . , fm) and J is generated by a Koszul-regular
sequence (g1, . . . , gn) such that (f1, . . . , fm, g1, . . . , gn) is a Koszul-regular sequence.
Indeed in that case we have quasi-isomorphism

A/I⊗L
A A/J ' KoszA(fi)i ⊗L

A KoszA(gj)j

' KoszA(f1, . . . , fm, g1, . . . , gn)

' A/(I + J).

The first quasi-isomorphism holds because of the Koszul-regularity of (fi)i and
(gj)j. The second is clear from the definition of the Koszul complex. The third
holds because of the Koszul-regularity of (f1, . . . , fm, g1, . . . , gn).

8.5. Cup products in K-theory with supports.

Lemma 22. Let A be a noetherian ring and M′• → M• → M′′• an exact triangle of
coherent complexes. If any two of these three complexes is supported on a subset
Y ⊆

∣∣Spec(A)
∣∣, then so is the third.
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Proof. By rotating the triangle, we can assume without loss of generality that M′•
and M′′• are the complexes supported on Y (note that shifting a complex has no
effect on its support).

Consider the long exact sequence in homology.

· · · ∂−→ Hi(M
′
•)

φ−→ Hi(M•)
ψ−→ Hi(M

′′
•)

∂−→ · · ·
From the short exact sequence

0→ Im(φ) ↪→ Hi(M•)� Im(ψ)→ 0

we see that SuppA(Hi(M•)) = SuppA(Im(φ)) ∪ SuppA(Im(ψ)). Since Im(ψ) ⊆
Hi(M

′′
•) we have

SuppA(Im(ψ)) ⊆ SuppA(Hi(M
′′
•)) ⊆ Y.

Similarly since Im(φ) is a quotient of Hi(M
′
•), we have

SuppA(Im(φ)) ⊆ SuppA(Hi(M
′
•)) ⊆ Y.

The claim follows. �

Lemma 23. Let A be a noetherian ring. If M• is a coherent complex supported on
a subset Y ⊆

∣∣Spec(A)
∣∣ and N• is a coherent complex supported on Z ⊆

∣∣Spec(A)
∣∣,

then the derived tensor product

M• ⊗L
A N•

is supported on Y ∩ Z.

Proof. First suppose that M• and N• both have homology concentrated in degree
zero. Then replacing M• by the quasi-isomorphic complex H0(M•)[0], and similarly
for N•, we reduce to the analogous question for finitely generated modules instead
of coherent complexes. Thus let M and N be f.g. A-modules. For a prime ideal
p ⊆ A, we have

Hi(M⊗L
A N)p ' Hi(Mp ⊗L

Ap
Np)

by exactness of localization. Thus we see that Hi(M⊗L
A N) has support contained

inside that of M and N, whence the claim.

Next suppose that M• is an arbitrary coherent complex but N• still has homology
concentrated in degree zero. Again we reduce to considering M• ⊗L

A N for M• ∈
CohA and N ∈ Modfg

A . We want to show that this is “good”, where good means it
has support contained in the support of M• and the support of N. Let [a, b] be
the range where the homology of M• is concentrated. Recall the exact triangles

Hi(M•)[i]→ τ6i(M•)→ τ6i−1(M•)

for each i. These remain exact after applying (−)⊗L
A N:

Hi(M•)[i]⊗L
A N→ τ6i(M•)⊗L

A N→ τ6i−1(M•)⊗L
A N.

For i = a, the right-most term is acyclic and Ha(M•)[a]⊗L
A N → τ6a(M•)⊗L

A N
is a quasi-isomorphism. By the first case above, Ha(M•)[a]⊗L

A N is good. Hence
so is τ6a(M•)⊗L

A N. For any i, if τ6i−1(M•)⊗L
A N is good, then by the previous

lemma it follows that τ6i(M•) ⊗L
A N is also good. By induction we conclude
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that τ6b(M•) ⊗L
A N is good. This is quasi-isomorphic to M• ⊗L

A N since M is
b-coconnective. Thus M• ⊗L

A N is good as desired.

Finally, one extends to any coherent complex N• by a symmetric argument. �

Construction 24 (Cup product with supports). It follows from the lemma that
there is a canonical product

∪ : KY
0 (A)⊗KZ

0 (A)→ KY∩Z
0 (A)

defined by [M•]⊗ [N•] 7→ [M• ⊗L
A N•].

8.6. Intersection numbers.

Remark 25. Let A be a regular ring. Then via the isomorphisms K
V(I)
0 (A) '

G0(A/I), for any ideal I, the cup product with supports induces a product of the
form

G0(A/I)⊗G0(A/J)→ G0(A/(I + J)).

Remark 26. Let A be a noetherian local ring with maximal ideal m. Then there
is a unique closed point x ∈

∣∣Spec(A)
∣∣ (with residue field κ(x) = A/m). Then

V(m) = {x}, so dévissage yields the isomorphism

G
{x}
0 (A) ' G0(κ(x)) ' Z.

Definition 27. Let A be a regular local ring. Let M and N be f.g. A-modules
with supports V(I) and V(J), respectively, such that V(I + J) = {x} (where x is
the closed point). Consider the pairing

χA : G0(A/I)⊗G0(A/J)→ G0(A/(I + J)) ' G0(κ(x)) ' Z.

Consider the classes [M] ∈ G
V(I)
0 (A) ' G0(A/I), [N] ∈ G

V(J)
0 (A) ' G0(A/J). These

give rise via χA to an integer χA(M,N) ∈ Z called the intersection multiplicity of
M and N.

Exercise 28. Let A be a noetherian local ring and M ∈ Modfg
A .

(i) Show that M is supported on V(m) ' {x} iff it is of finite length.

(ii) Show that the isomorphism G
{x}
0 (A) ' Z above sends [M] 7→ `A(M), where

`A(M) denotes the length of M.

(iii) If A is regular, show that the intersection multiplicity is computed by the
formula

χA(M,N) =
∑
i

(−1)i `A(TorAi (M,N)).

(This is Serre’s intersection number.)
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8.7. Irreducible subsets of the Zariski spectrum.

Definition 29. Let A be a commutative ring. A closed subset of
∣∣Spec(A)

∣∣ is
a subset of the form V(I), where I is an ideal. An irreducible closed subset is a
subset of the form V(I), where rad(I) is a prime ideal. An integral closed subset is
a subset of the form V(p), where p is a prime ideal.

Example 30. Note that
∣∣Spec(A)

∣∣ is irreducible (as a subset of itself) iff the
nilradical is a prime ideal, i.e., iff Ared is an integral domain. Equivalently, A
contains exactly one minimal prime ideal. In this case we also say that A is
irreducible.

Definition 31. Note that every integral closed subset V(p) is contained in an
integral closed subset V(q) where q is a minimal prime ideal. Subsets of the latter
form are called irreducible components of

∣∣Spec(A)
∣∣.

Remark 32. Let I ⊆ A be an ideal and consider the subset V(I) ⊆
∣∣Spec(A)

∣∣.
Via the canonical bijection V(I) '

∣∣Spec(A/I)
∣∣, we can regard any subset Y ⊆ V(I)

as a subset of
∣∣Spec(A/I)

∣∣. We say Y is closed/integral/irreducible in V(I), or an

irreducible component of V(I), if it is such as a subset of
∣∣Spec(A/I)

∣∣. Similarly we

say a point η ∈ V(I) is a generic point of V(I) if it is a generic point of
∣∣Spec(A/I)

∣∣.
Definition 33. The codimension of an irreducible closed subset Y ⊆

∣∣Spec(A)
∣∣

is the maximal length n of a chain

Y = Y0 ( Y1 ( · · · ( Yn

of irreducible closed subsets of
∣∣Spec(A)

∣∣. More generally, if Y ⊆
∣∣Spec(A)

∣∣ is a
closed subset, we say that its codimension is the infimum of the codimensions of
all irreducible closed subsets contained in Y. We denote this natural number by
codim(Y), or codimA(Y) when there is potential ambiguity. We say Y is of pure
codimension n if all its irreducible components are of codimension n.

Example 34. The irreducible subsets of codimension 0 are the irreducible com-
ponents.
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