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6 PREFACE
1. WHAT 1S MOTIVIC HOMOTOPY THEORY?

1.1. The existence of a motivic cohomology theory was first conjectured by A. Beilinson [Bei87].
This cohomology theory was expected to be universal with respect to mixed Weil cohomologies
like ¢-adic cohomology or algebraic de Rham cohomology; that is, there should be cycle class
maps from the rational motivic cohomology groups to, say, -adic cohomology.

Further, this cohomology theory was expected to arise from a category of coefficients, the
category of so-called motivic complexes. Hence for each scheme S, Beilinson conjectured the
existence of categories DM(S), admitting Grothendieck’s formalism of six operations: there
should be operations (f*, f., fi, f', ®, Hom) acting on these categories, for f : T — S a morphism
of schemes, satisfying various compatibilities like base change and projection formulas.

After the work of many mathematicians including J. Ayoub, D.-C. Cisinski, F. Déglise, M.
Levine, and V. Voevodsky, we are close to the theory envisioned by Beilinson: we have categories
of motivic complexes over general base schemes, satisfying the formalism of six operations at
least partially. We refer the reader to [CDO09] for the state of the art.

1.2. In algebraic topology, the analogue of motivic complexes are complexes of abelian groups:
the derived category D(Ab) is the category of coefficients for singular cohomology. It turns out
that D(Ab) is the linear version of another category Spt (whose objects are called spectra), in
the sense that it can be identified with the category of modules over a spectrum Zs,; in Spt. In
the category Spt, we have representability not only of singular cohomology, but of generalized
cohomology theories like complex K-theory and complex cobordism.

We can form an analogue of the category Spt in algebraic geometry. F. Morel, and
Voevodsky constructed for each scheme S, categories SH(S) of motivic spectra. The thesis of
Ayoub [Ayo07] established the construction of the six operations on motivic spectra, following
ideas of Voevodsky.

Just as in topology, the category of modules over the spectrum Zg, representing motivic
cohomology, is equivalent to the category DM(S) (at least when S is the spectrum of a field of
characteristic zero; see [RO08]). In the category SH(S) we have representability of generalized
motivic cohomology theories like homotopy invariant algebraic K-theory and algebraic cobordism.
Mixed Weil cohomologies are also representable by motivic spectra (see [CD12]).

When a cohomology theory is representable as a motivic spectrum, we may view cohomology
classes as morphisms in the category SH(S). This gives us the possibility to take advantage of
the power of the formalism of six operations, of which only shadows can be seen at the level of
cohomology groups (Kiinneth formulas, Gysin maps, etc.).

2. WHY DERIVED SCHEMES?

2.1. As was expected by Beilinson, motivic cohomology is closely related to intersection theory
and algebraic cycles. For example, Levine proved that over a field, it can be computed as the
higher Chow groups defined by S. Bloch (see [Lev06]).

It is not currently known how to extend this comparison to more general bases, as conjectured
by Beilinson; Levine’s proof uses a highly technical moving lemma which is only known for fields.
This is related to the lack of a good intersection theory over general base schemes (say regular
and of finite type over Spec(Z)), a problem posed by A. Grothendieck in [SGA 6] and studied
indirectly by D. Quillen and R. Thomason in their work on algebraic K-theory.

We will not have anything to say about this problem in this thesis, but it was the motivation
for us to pass to the world of derived algebraic geometry.
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2.2. Derived algebraic geometry is an extension of classical algebraic geometry where we allow
schemes to have “higher nilpotents”.

For example, let Z and Z’ be closed subschemes of a regular scheme X, defined by ideals J
and J', respectively. Let us assume that Z and Z’ intersect properly, so that codim(Z NZ',X) =
codim(Z, X) 4 codim(Z’, X). It is well-known that the scheme-theoretic intersection Z xx Z’ does
not capture the correct intersection multiplicity in the non-transverse case. Rather, according
to Serre’s intersection formula (see [Ser00]), we must take all the groups

Tor; ** (Ox 4 /T2, Ox0/T) (i = 0)

into account, for each generic point x of Z xx Z'.

On the other hand, we can take the intersection in the world of derived algebraic geometry,
i.e. the derived fibred product Z x® Z’. Tts underlying classical scheme coincides with Z xx Z’,
but when Z and Z’ do not intersect transversally, it has higher nilpotents. More precisely,
its structure sheaf is a sheaf of simplicial commutative rings; we recover the sheaf Oz« 7 as
To(Ogz x® /), but it also has higher homotopy groups

mi(Og xgz') (i >0)

whose stalks are none other than the Tor groups written above. The data contained in these
higher homotopy groups is what we think of as “higher” nilpotents.

This observation is what suggested to us that derived algebraic geometry could be a more
natural setting for the study of motives.

3. WHAT WE DO IN THIS TEXT

In this thesis we will show that the motivic homotopy categories SH(S) extend to the world
of derived algebraic geometry, as well as the full formalism of six operations.

In Chapter 0, we review some preliminaries about theories of (0o, 1)-categories and derived
algebraic geometry. The reader who is already familiar with these theories may want to skim
this chapter in order to acquaint himself with the notation we use.

In Chapter 1, we construct the unstable and stable motivic homotopy categories over a
derived scheme. We prove our first main result, the analogue of Morel-Voevodsky’s localization
theorem for motivic spaces.

In Chapter 2, we construct the formalism of six operations on the stable motivic homotopy
category. We use the formalism of (00, 2)-categories of correspondences introduced in [GR16].

4. RELATION WITH PREVIOUS WORK

4.1. Motivic homotopy theory over classical base schemes was introduced in [MV99], using the
language of model categories. An (oo, 1)-categorical construction was given in [Rob14]. Our
definition is essentially a straightforward generalization to the setting of derived schemes. The
only subtlety is that, unlike Morel-Voevodsky, we do not impose any finiteness conditions on our
base schemes. This means that descent (by which we mean descent with respect to Cech covers)
is no longer equivalent to hyperdescent (by which we mean descent with respect to arbitrary
hypercovers). Here we work with the weaker notion of descent.

The main result of Chapter 1, the localization theorem, was proved by Morel-Voevodsky
in loc. cit. Our proof follows the same general strategy, but since we impose a weaker descent
condition on our sheaves, we have to work a bit more.
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4.2. The formalism of six operations in motivic homotopy theory, in the setting of classical
schemes, has been constructed by J. Ayoub in his thesis [Ayo07], following ideas of Voevodsky.
We use part of his work as input in our construction.

However, Ayoub works with the language of triangulated categories, and so does not
obtain the full homotopy-coherent system of compatibilities between the various operations.
An (o0, 1)-categorical lift of the six functor formalism was completed in the thesis of Robalo
[Rob14], using the framework of [LZ12] based on multi-simplicial sets. In this work, we follow a
different approach, developed by Gaitsgory—Rozenblyum in [GR16], based on (0o, 2)-categories
of correspondences. The relation between the two is explained in loc. cit. However, we slightly
modify the approach of Gaitsgory—Rozenblyum in order to encode projection formulas; their
method of encoding projection formulas cannot be applied to the category of motivic spectra,
because we do not know if the canonical functors SH(X) ®sys) SH(Y) — SH(X xsY) are
equivalences.

5. WHAT IS NOT COVERED IN THIS TEXT

5.1. Using the framework we set up in this text, it is possible to give a definition of motivic
cohomology, homotopy invariant algebraic K-theory, and algebraic cobordism of derived schemes.
One can also prove that these cohomology theories are insensitive to higher nilpotent thickenings
(just as they are known to be insensitive to usual nilpotent thickenings).

In a sequel to this work we will apply this to construct virtual fundamental classes in
oriented generalized motivic Borel-Moore homology theories.

5.2. In this text we work with the version of derived algebraic geometry where commutative
rings are replaced by simplicial commutative rings. It is possible to consider other contexts for
derived algebraic geometry, like spectral algebraic geometry, where one uses connective E,-ring
spectra. Another possibility, lying between simplicial commutative rings and connective E,-ring
spectra, is connective Eo-dg-algebras over a commutative ring.

The results of Chapter 1 are true in all of these contexts, and the proofs we have provided
generalize mutatis mutandis; see [Khal6]. There is some subtlety however: there are two possible
notions of smoothness in spectral algebraic geometry, corresponding to two possible choices for
the affine line. Spectral smoothness, the version of smoothness based on the cotangent complex,
corresponds to the spectral affine line. On the other hand, classical smoothness, by which we
mean flat and smooth on underlying classical schemes, corresponds to the classical affine line.
The correct definition of the motivic homotopy category turns out to be the one using the
spectrally smooth site and the spectral affine line. However, a surprising observation is that, over
a classical scheme, the motivic homotopy category may not coincide with the Morel-Voevodsky
motivic homotopy category; for example, over any field of positive characteristic, the spectrally
smooth site is different from the usual smooth site.
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12 0. PRELIMINARIES
1. INTRODUCTION

In this chapter we give a very brief survey of the theories of (oo, 1)-categories and derived
algebraic geometry.

1.1. (oo, 1)-categories. Let R be a commutative ring. Recall that for R-modules M and N,
the groups Torf{(M, N) are shadows of a chain complex M ®ﬁ N which is well-defined only up
to quasi-isomorphism: it depends on a choice of projective resolution. In other words, the
abelian category of chain complexes of R-modules is too rigid for the purposes of homological
algebra; categorical constructions like limits and colimits will not behave well with respect to
quasi-isomorphism. Instead, the language of homotopy theory is appropriate.

An abstract homotopy theory is the datum of a category C together with a class W of
morphisms called weak equivalences. Such a pair (C, W) is a presentation of an (oo, 1)-category.
For example, the (0o, 1)-category of homotopy types or spaces is presented equivalently by
topological spaces (up to weak homotopy equivalence) or simplicial sets (also up to weak
homotopy equivalence), among many other possibilities.

In fact, the collection of homotopy theories is itself a homotopy theory, and this homotopy
theory is equivalent to the homotopy theory of (oo, 1)-categories!. In particular, the homotopy
theory of homotopy theories can be taken as a model for (oo, 1)-categories. However, this
approach can be problematic. After all, a pair (C, W) is itself only well-defined up to weak
equivalence of homotopy theories?, which is much weaker than equivalence of the underlying
category C, and it is not clear how to extract (oo, 1)-categorical information like (co)limits
from it, as they cannot just be computed as (co)limits in the category C. Even more simply,
morphisms in the associated (0o, 1)-category are not just morphisms in the category C.

Classically, these problems have been solved by using D. Quillen’s theory of model categories.
A model structure on a pair (C, W) is the data of classes of cofibrations and fibrations subject
to various axioms. The purpose of this structure is to allow computation of (oo, 1)-categorical
(co)limits as usual categorical (co)limits in the category C, after suitable (co)fibrant replacement
of the diagram. For example, there are projective and injective model structures on the category
of chain complexes, where cofibrant or fibrant replacement corresponds to choosing projective
or injective resolutions, respectively. Similarly, sets of morphisms in the (oo, 1)-category can
be computed as the set of morphisms in the category C, after taking cofibrant and fibrant
replacements of the objects.

Though this approach is very powerful, the choice of a specific model-categorical presentation
adds a factor of arbitrariness to all constructions and proofs, and requires some additional effort
in checking that all constructions performed are in fact the homotopically correct ones. This
effort can be nontrivial.?

The modern approach consists in forgetting about presentations entirely, and instead
choosing a more transparent model for (oo, 1)-categories, like the quasi-categories of A. Joyal or
complete Segal spaces of C. Rezk. For example, a quasi-category is by definition a simplicial set
satisfying the weak Kan condition; an object of a quasi-category is a 0-simplex, a morphism is a

IThis can be made into a mathematically rigourous statement after the work of [BK12].

2Weak equivalence of homotopy theories is precisely equivalence of (oo, 1)-categories.

3The theory gets very technical very quickly. For example, let C be a small (co, 1)-category. The (oo, 1)-
category of presheaves on C can be presented by the injective model structure on the category of simplicially
enriched functors between the simplicially enriched category associated to C°P, and the simplicially enriched
category of simplicial sets. Compare with Footnote 4.
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1-simplex, and a functor between quasi-categories is a morphism of simpicial sets.? Similarly,
(co)limits and other categorical constructions have intrinsic quasi-categorical descriptions.

Let us consider a simple example. Suppose for instance that we have a diagram

Xo

|

Xy —X
in the (00, 1)-category of spaces.

The classical way to compute its limit would be choose a presentation of the (oo, 1)-category
of spaces, for example by the model category of topological spaces, and to compute the homotopy
limit in this model structure. Hence one would first replace this diagram by a diagram in the
category of topological spaces, where each of the objects is fibrant (in the chosen model structure),
and at least one of the morphisms X; — X is a fibration (in the chosen model structure). A
topological space with the homotopy type of the homotopy limit would then be given by the
usual categorical limit of the resulting diagram.

In the (o0, 1)-categorical approach, the limit of the diagram is simply the space of pairs
(z0, 21, @), where z; is a point of X; and « is a path in the space X between the images of the
points g and x1. More precisely, each x; is a morphism pt — X;, where pt denotes the terminal
object in the (oo, 1)-category of spaces, and « is a commutative square

pt —2— X,

[ |
Xy — X,

This is nothing more than the universal property of the (oo, 1)-categorical limit.

1.2. Derived algebraic geometry. The (oo, 1)-category of simplicial commutative rings is
an enlargement of the ordinary category of commutative rings where we have objects like derived
tensor products A ®% B, for a commutative ring R and R-algebras A and B.

By carefully replacing commutative rings by simplicial commutative rings in the definition of
scheme (and hence passing to the world of (0o, 1)-categories), we obtain the definition of derived
scheme. Any derived scheme S has an underlying classical scheme S}, and the relationship
between S and S is analogous to the relationship between the classical scheme S, and its
underlying reduced scheme S¢j yed-

In the same way that natural constructions involving algebraic varieties force one into
the world of schemes, derived schemes also arise naturally from considerations involving their
classical counterparts.

For example, let S = Spec(R) be an affine scheme and let X = Spec(A) and Y = Spec(B)
be affine schemes over S. The derived fibred product

R L
X xY = Spec(A ® B)
S R

is an important example of a derived scheme. When X or Y is flat over S, this coincides with
the classical fibred product X xgY = Spec(A ®g B). In general, the derived tensor product
contains information that cannot be recovered from the ordinary tensor product (cf. Serre’s
intersection formula, which in certain situations computes intersection multiplicities in terms of
the groups Tor; (A, B)).

4The quasi-category of presheaves on a small quasi-category C is the internal hom Hom .. (C°P, Spc),
where Spc is the quasi-category of spaces. Compare with Footnote 3.
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For another example®, let S = Spec(R) be an affine scheme and fo,..., f, € R a set of
global sections. The closed derived subscheme cut out by the equations f; is defined as

L
Z = Spec(R /(fi):),

where we have written R/ L( fi)i for the Koszul complex of the sequence (f;);, which can be
defined as a simplicial commutative ring. When (f;); is a reqular sequence, the Koszul complex
is quasi-isomorphic to the usual quotient R/(f;);, so Z is identical to the classical scheme
Spec(R/(fi):), which is in this case a regularly embedded or lci closed subscheme of S. In
general, Z is a derived scheme with underlying classical scheme

ch = Spec(R/(fz),)

These examples can both be globalized to non-affine base schemes S. To some extent, they
explain the ubiquity of flatness and regularity/lci assumptions in algebraic geometry: these are
precisely the conditions that guarantee that the relevant derived schemes are actually classical.

1.3. Conventions. We will use the language of (0o, 1)-categories freely throughout the text.
Though we will use the language in a model-independent way, we fix for concreteness the model
of quasi-categories as developed by A. Joyal and J. Lurie.

For simplicity we adopt the following conventions:

The term “category” means, by default, “(co, 1)-category” (= quasi-category). When we
want to refer to an ordinary category, we will use the term “ordinary category” or “(1,1)-
category”.

We will say that a morphism in an (oo, 1)-category is invertible or an isomorphism (as in
[Joy04] and [GR16]) where some authors might use the word equivalence (e.g. [Lur09b]). We
will use the symbol “=" for isomorphic objects in an (0o, 1)-category, as the notion of equality
simply does not exist.

The term “2-category” means, by default, “(co,2)-category”. When we want to refer to an
ordinary 2-category, we will use the term “(2,2)-category” or “ordinary 2-category”. For us,
this term always means weak 2-category (a.k.a. bicategory). An ordinary 2-category in which
the 2-morphisms are invertible will be called a “(2,1)-category”.

The term “scheme” means, by default, “derived scheme”. When we want to refer to a
classical scheme, we will use the term “classical scheme”.

Our focus is this chapter is on giving statements. We only attempt to give rigourous proofs
when we do not know a reference in the literature. In particular, in this chapter, we will “define’
(00, 1)-categories and (oo, 1)-functors only on objects and 1-morphisms; the reader will find their
precise constructions in the literature.

)

1.4. Organization of this chapter. This chapter is a very brief survey of some parts of the
theories of (00, 1)-categories and of derived algebraic geometry that we will use in this text.

In Sect. 2 we briefly review several notions from the theory of (oo, 1)-categories that will
play an important role in this text: stable (oo, 1)-categories, presheaves, filtered and sifted
colimits, arenas (more commonly known as presentable (oo, 1)-categories), toposes, and sites.
References for this section are [Lur09b], [Lurl6], and [Joy04].

In Sect. 3 we review some (00, 2)-category theory, and define an (0o, 2)-category Arenamod
which will play an important role in Chapter 2. We follow the treatment of [GR16].

5The reader will observe that this is in fact a special case of the first example.
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In Sects. 4-6 we give a very brief exposition of the theory of derived schemes. We follow
the functorial approach of Toén—Vezzosi, see [TV08] and [MT10].
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2. (00, 1)-CATEGORIES

References for this section are [Lur09b], [Lurl6], and [Joy04].
2.1. (oo, 1)-categories.

2.1.1. In the world of (00, 1)-categories, all sets are replaced by spaces. Hence instead of elements
of sets, we have points in spaces; instead of equality between two elements, we have paths
between points, and so on.

For example, in any (oo, 1)-category C, we have for any two objects x and y a mapping
space
Mapsg(z,y) € Spe

in the (0o, 1)-category of spaces.

2.1.2. Any ordinary category can be viewed as an (0o, 1)-category, with the same objects and
discrete mapping spaces. This defines a fully faithful functor from the (oo, 1)-category of ordinary
categories to the (oo, 1)-category of (oo, 1)-categories.

Conversely, given an (oo, 1)-category C, we can form its underlying ordinary category,
denoted (C)°*" | with the same objects and with morphisms given by connected components of
mapping spaces:

Homgyoran (7, y) = mo(Mapsg (7, y)) (z,y € C).

The assignment C — (C)°"" defines a left adjoint to the above inclusion.

2.1.3. In the sequel, the term “category” will mean “(co, 1)-category” by default; when we need
to refer to the classical notion of category, we will say “ordinary category”.

2.1.4. We now recall some standard features of ordinary category theory which have analogues
in this world.

2.1.5. Given a category C, there are objects and morphisms. Morphisms can be invertible,
or isomorphisms. There is a category Arrows(C) whose objects are morphisms in C, and
morphisms are commutative squares.

2.1.6. A category C has an underlying space, denoted (C)S?e.

The category of spaces embeds fully faithfully into the category of categories, and the
assignment C + (C)SP¢ is right adjoint to the inclusion. We also use the term co-groupoid for
a category in the essential image of this embedding.

2.1.7. Given a category C, there is an opposite category (C)°P obtained by reversing the
directions of morphisms.

2.1.8. Given two categories C and D, we have a category Funct(C,D) whose objects are
functors u : C — D. There are notions of fully faithful, essentially surjective, or equivalence, for
any such functor. A functor is ezact (resp. right-ezact, left-exact) if it commutes with finite
colimits and limits (resp. with finite colimits, resp. with finite limits).

2.1.9. Given a category C, there is a notion of full subcategory of C.
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2.1.10. Given two categories C and D, there is a notion of adjunction (v : C — D,v: D — C).

Given an adjunction as above and a morphism f : u(c) — d with ¢ an object of C and
d an object of D, we say that the corresponding morphism ¢ : ¢ — v(d) is obtained by right
transposition from f. Conversely, f is obtained by left transposition from g.

2.1.11. Given a category C and an object ¢, there are slice categories C,. and ., C. More
generally, given a functor u : I — C, there are slice categories C/,, and .\ C.

Also, given functors u : C; — C and v : Co — C, there is a comma category (u | v) whose
objects are triples (c1, ca, f), with f a morphism wu(cq) — v(c2) in C.

Taking C; (resp. Cs) to be the trivial category, the functor u (resp. v) defines an object
¢ € C, and we write the comma category (u | v) as (c\v) (resp. (u/c)).

Note that when we further take v (resp. u) to be the identity functor of C, we recover the

slice categories (c\idc) =  C (resp. (idc/c) = C/.).

2.1.12. Let I be a category. Given an I-indexed diagram (c;);cr in a category C, i.e. a functor
(i € I) = (¢; € C), there is a notion of colimit (resp. limit), denoted ligiEI (resp. @iel),
satisfying the expected universal property.

2.1.13. The collection of (small) categories forms a (large) category (oo, 1)-Cat.

2.1.14. Given a category C, there is a notion of simplicial object in C, which is a functor
(A)°P — C. Here A is the ordinary category whose objects are sets [n] := {0,1...,n} (n > 0),
and morphisms are order-preserving morphisms of sets.

2.1.15. There is a notion of (closed) symmetric monoidal structure on a category C. Any
category admitting finite products admits a canonical symmetric monoidal structure; when
equipped with this structure, we call such a category a cartesian monoidal category.

In a symmetric monoidal category, there is a notion of commutative monoid. We write
CMon(C) for the category of commutative monoids.

Given a commutative monoid O in C, there is a notion of O-module object in C. We write
O-mod for the category O-modules.
2.1.16. A category is contractible if its underlying space is (weakly) contractible.

2.2. Monomorphisms.

2.2.1. Let X be a space. We say that X is n-truncated (n > 0) if m;(X,2) = 0 for i > n
and any base point x. By convention, X is (—1)-truncated if it is empty or contractible, and
(—2)-truncated if if is contractible.

A morphism of spaces f : X — Y is n-truncated if its fibres are n-truncated.
2.2.2. In a category C, we say that an object ¢ is n-truncated if for every object d in C, the
mapping space Mapsq(d, ¢) is n-truncated.

A morphism f : x — y is n-truncated if for every object ¢ in C, the morphism of spaces
Mapsg(c, ) — Mapsg(c, y) is n-truncated.
2.2.3. We say that a morphism f in a category C is a monomorphism if it is (—1)-truncated.

Note that a morphism is (—2)-truncated if and only if it is an isomorphism.
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2.2.4. If C admits finite limits, then a morphism f : & — y is n-truncated (n > —1) if and only
if the diagonal morphism = — x X, z is (n — 1)-truncated.

2.2.5. The full subcategory of n-truncated objects (n > —2) in a category C is stable under
small limits.

2.3. Presheaves.

2.3.1. Let C be a small category. A presheaf (of spaces) on C is a functor (C)°P — Spec.

We let P(C) denote the category of presheaves on C, which is by definition the functor
category Funct((C)°P, Spc).

2.3.2. Any object ¢ € C represents a presheaf hc(c) defined by
hc(c)(d) := Mapsc(d, ¢)
for each object d € C.

The assignment ¢ — hc(c) defines a canonical functor hc : C — P(C), called the Yoneda
embedding. The Yoneda lemma states:

Proposition 2.3.3. Let F be a presheaf on C. For every object ¢ € C, there is a canonical
isomorphism of spaces

Mapsp c)(hc(c), F) — F(c).

In particular, the Yoneda embedding h¢ is fully faithful. We say that a presheaf F is
representable if it is isomorphic to hc(c) for some object ¢ € C.

2.3.4. The category P(C) admits arbitrary small colimits and limits, and they can be computed
objectwise. That is, for any diagram of presheaves i — F;, indexed on a category I, we have
canonical isomorphisms of spaces

(lim F;)(c) = lim Fy(c),

ict ict
(% Fi)(c) = %Fi@%

for each object ¢ € C.

2.3.5. In particular, the category P(C) admits a cartesian monoidal structure, i.e. a symmetric
monoidal structure where the monoidal product is given by the cartesian product.

2.3.6. The category of presheaves admits the following universal property.

Given two categories C and D where small colimits are representable, we write Funct,(C, D)
for the full subcategory of Funct(C, D) spanned by functors that commute with small colimits.
Then we have:

Proposition 2.3.7. Let C be a small category. For any category D where small colimits are
representable, the canonical functor

(2.1) Funct)(P(C),D) — Funct(C,D),

given by restriction along the Yoneda embedding, is an equivalence.



2. (o0, 1)-categories 19

In other words, the category P(C) is freely generated by C under small colimits.

In particular, any functor v : C — D admits a canonical extension to a functor u; : P(C) —
D. This is left adjoint to the functor u* of restriction of presheaves along w.

We call w the left Kan extension of u. For any presheaf F, we have a canonical isomorphism

(2.2) w(F) = lim u(e),
hc(c)—F

where the colimit is taken over the slice category (hc/F).

2.3.8. Taking D = P(C) above, we see that the identity functor of P(C) is the left Kan extension
of the Yoneda embedding.

In particular, every presheaf F can be canonically identified with a small colimit of repre-
sentable presheaves:

(2.3) F= lim A
hc(c)—F

2.3.9. Let u : C — D be a functor of small categories. Then the universal property of the
category of presheaves gives a canonical functor

u : P(C) — P(D),
left adjoint to the restriction functor u* : F +— F o w.
The functor wuy is the unique functor which fits in the commutative square
C————D
lhc J{hD
P(C) —— P(D)

and commutes with small colimits.
2.4. Filtered colimits.

2.4.1. Let I be a small category.

Definition 2.4.2. The category I is k-filtered, for a reqular cardinal k, if I-indexed colimits
commute with k-small limits, in the category of spaces.

The category I is filtered if it is No-filtered, i.e. I-indexed colimits commute with finite
lomats.

Any ordinary category is filtered in the sense of [SGA 4] if and only if it is filtered when
viewed as an (00, 1)-category.

Every filtered category is contractible.

2.4.3. Let C be a small category. We define:
Definition 2.4.4. A presheaf F on C is k-inductive if the slice category (hc/F) is k-filtered.
The formula (2.3) shows that a presheaf is x-inductive if and only if it is a s-filtered colimit
of a diagram of representable presheaves.
Note that representable presheaves are k-inductive.

In the case k = Ny, we say simply inductive instead of Rg-inductive.
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2.4.5. Let Znd,(C) (resp. Znd(C)) for the full subcategory of P(C) spanned by s-inductive
presheaves (resp. by inductive presheaves).

Given two categories D and D’ admitting small k-filtered colimits, we write Funct,_a1;(D,D’) C
Funct(D,D’) for the full subcategory spanned by functors commuting with -filtered colimits.

We have the following universal property for Znd,(C):

Proposition 2.4.6. Let C be a small category and D a category admitting small k-filtered
colimits. The canonical functor

Funct g1t (Znd,(C),D) = Funct(C,D),
given by restriction along the Yoneda embedding, is an equivalence.

In particular any functor u : C — D extends uniquely to a functor u; : Znd,(C) — D. This
is also given by the formula (2.2), and we also call it the left Kan extension of w.

2.5. Sifted colimits.

2.5.1. Let I be a small category.

Definition 2.5.2. (i) The category 1 is k-sifted, for a regular cardinal k, if I-indexed colimits
commute with k-products, in the category of spaces.

(ii) The category I is sifted if it is Ro-sifted, i.e. I-indexed colimits commute with finite
products.
Any k-filtered category is k-sifted. The category A°P is sifted.

Any ordinary category is sifted in the sense of [GUT1] if and only if it is sifted when viewed
as an (00, 1)-category.

Every sifted category is contractible.

2.5.3. Let C be a small category. We define:
Definition 2.5.4. A presheaf F on C is weakly x-inductive if the slice category (hc/F) is
K-sifted.

The formula (2.3) shows that a presheaf is weakly x-inductive if and only if it is a k-sifted
colimit of a diagram of representable presheaves. If C admits x-small coproducts, a presheaf is
weakly x-inductive if and only if it commutes with k-small products.

Note that representable presheaves are weakly x-inductive.

In the case k = Ny, we say simply weakly inductive instead of weakly Rg-inductive.
2.5.5. Let Wind.(C) (resp. Wind(C)) for the full subcategory of P(C) spanned by weakly
k~inductive presheaves (resp. by weakly inductive presheaves).

Given two categories D and D’ admitting small k-sifted colimits, we write Funct, g (D, D’) C
Funct(D,D’) for the full subcategory spanned by functors commuting with k-sifted colimits.

We have the following universal property for Wind . (C):

Proposition 2.5.6. Let C be a small category and D a category admitting small k-sifted
colimits. The canonical functor

Functy_gigs(Wind,,(C),D) — Funct(C, D),

given by restriction along the Yoneda embedding, is an equivalence.
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In particular any functor v : C — D extends uniquely to a functor uy : Wind,,(C) — D.
This is also given by the formula (2.2), and we also call it the left Kan extension of w.

2.6. Arenas. The terminology “arena” was introduced by [Joy04]. In [Lur09b] the term
“presentable co-category” is used instead.

2.6.1. Let C and D be categories where small colimits are representable, and k a regular cardinal.
A functor C — D is k-accessible if it commutes with k-filtered colimits. It is accessible if it is
k-accessible for some k.

Definition 2.6.2. A left localization of a category C is a functor v : C — D admitting a fully
faithful right adjoint.

An accessible localization (resp. r-accessible localization) is a left localization such that the
right adjoint of v is accessible (resp. k-accessible).

An exact localization is an accessible localization such that v is exact (i.e. commutes with
finite limits).
2.6.3. Let C be a category. We define:
Definition 2.6.4. The category C is compactly generated if there exists a small category Cy

and an Wg-accessible localization v : P(Cy) — C.

For example, for any small category Cy, the category Znd(Cy) is compactly generated.
2.6.5. Let C be a category. The following notion will play an important role throughout this
text:

Definition 2.6.6. The category C is an arenaS if there exists a small category Cy and an
accessible localization v : P(Cqy) — C.

A morphism of arenas is a functor that commutes with small colimits.

We write Arena for the category of arenas.

2.6.7. The class of arenas is stable under the formation of slice categories and functor categories:

Lemma 2.6.8. Let C be an arena. For any functor p : 1 — C, the slice categories (C/p) and
(p\C) are arenas.

Lemma 2.6.9. Let C and D be arenas. Then the category Funct,(C,D) of morphisms of
arenas is an arena.
2.6.10. The following fact will be referred to as the “adjoint functor theorem”:

Proposition 2.6.11. Let C and D be arenas. Then a functor u : C — D admits a right adjoint
if and only if it commutes with small colimits. It admits a left adjoint if and only if commutes
with small limits and is accessible.

We also have:

Proposition 2.6.12. Let C be an arena. Then a functor (C)°P — Spc is representable if and
only if it commutes with small limits.

5This term is due to Joyal [Joy04]. The term presentable or locally presentable (0o, 1)-category is more
common in the literature.
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2.6.13. Let S be a set of morphisms in an arena C. We define:

Definition 2.6.14. (i) An object ¢ € C is S-local if, for every morphism f:x — y in S, the
induced morphism of spaces

Mapsc(y, ¢) = Mapsg(z, c)
is invertible.

(ii) A morphism f : x — y is an S-local equivalence if for every S-local object ¢, the induced
morphism of spaces

Mapsc(y, ¢) = Mapsc(z, )

1s invertible.

We have:

Proposition 2.6.15. Let C be an arena. For any essentially small’ set S of morphisms in
C, the inclusion of the full subcategory Cs of S-local objects admits a left adjoint L. : C — Cg,
which exhibits Cg as an accessible left localization of C.

In the above situation, a morphism f in C induces an isomorphism L(f) if and only if f is
an S-local equivalence.

In fact, all accessible left localizations of an arena C arise in the above way.

2.6.16. Let C be an arena and S an essentially small set of morphisms.

Given an arena D, let Funct g(C, D) denote the full subcategory of Funct(C, D) spanned
by functors that send morphisms in S to isomorphisms in D.

We have the following universal property of Cg:
Proposition 2.6.17. For any arena D, the canonical morphism
Funct)(Cs, D) = Funct s(C, D)

given by restriction along the functor L : C — Cg, is an equivalence.

2.6.18. Another way to formulate the above is as follows.

Consider the category of pairs (C,S), with C an arena and S an essentially small set of
morphisms. There is a canonical fully faithful functor D — (D, iso), where iso is the set of
isomorphisms in D.

It admits a right adjoint, the forgetful functor (C,S) — C.
It also admits a left adjoint, the left localization functor (C,S) +— Cs.

Further, both adjoints are symmetric monoidal, with respect to the cartesian monoidal
structure on the category of pairs; see [Rob14, §9.1].

2.7. Module arenas.

TA set of morphisms S is essentially small if there is a small subset So C S such that every morphism in S
is isomorphic to a morphism of Sg in the category Arrows(C).
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2.7.1. The category of arenas admits a canonical symmetric monoidal structure.
Let C; and Cs be arenas. There is a canonical functor
Cl X CQ — Cl (24 CQ
which commutes with small colimits in each argument, and for any arena D, the canonical
functor
Funct)(C; ® Cq,D) — Funct(Cy x Cq, D)
is fully faithful with essential image spanned by functors C; x Co — D that commute with
small colimits in each argument.

2.7.2. A symmetric monoidal arena is a commutative monoid object in the category of arenas.

Equivalently, this is a symmetric monoidal category whose underlying category is an arena,
and such that the monoidal product commutes with small colimits in each variable.

For example, given a small category C, the category P(C) is a cartesian monoidal arena,
i.e. a symmetric monoidal arena whose monoidal product is given by the cartesian product.

2.7.3. We will write Arenamon for the category of symmetric monoidal arenas.

2.7.4. By the adjoint functor theorem, the symmetric monoidal structure on an arena is auto-
matically closed, i.e. there exists a bifunctor Homa(—, —) which is right adjoint to — ® —.

2.7.5. Let O be a symmetric monoidal arena. An O-module arena is an O-module in the
category of arenas. We let O-mod denote the category of O-module arenas.
A morphism of O-modules u : M — N in particular gives rise to functorial isomorphisms
o®u(n) =ulo®@m)
for any objects 0 € O, m € M, n € N (but also contains much more coherence data).
2.7.6. One can define a notion of lax (resp. colaz) functor of O-modules. This essentially amounts

to requiring that, instead of isomorphisms as above, we have morphisms o ® u(n) — u(o ® m)
(resp. u(o®@m) = o @ u(n)).

The following lemma will be useful:

Lemma 2.7.7. Let O be a symmetric monoidal arena. Let M and N be O-module arenas.
Suppose that there is an adjunction

u: M — N, v:N—-M
of underlying categories. Then the structure of colax functor of O-modules on u is equivalent to
the structure of lax functor of O-modules on v.

2.8. Toposes.

2.8.1. An important subclass of arenas is formed by toposes:

Definition 2.8.2. A topos is a category X such that there exists a small category C and an
exact localization v : P(C) — X.

A morphism of toposes is a functor admitting an exact left adjoint.

Any topos has the property of universality of colimits:

Proposition 2.8.3. For any morphism f : x — y, the functor X,, — X,, given by the
assignment (y' — y) = (¥’ xy & — x) commutes with small colimits.
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2.8.4. Let f: 2 — y be a morphism in a topos X.

The Cech nerve of f is the simplicial object of X/, defined degreewise as the (n + 1)-fold
fibred product

Clz/y)n =T X T X - X1
vy oy

More precisely, the functor f — C(z/y)s on the slice category Xy is right adjoint to the
functor that evaluates a simplicial object at degree zero.

We define:

Definition 2.8.5. The morphism f : x — y is an effective epimorphism if the canonical
morphism

lig C(a/y)n — e
neA°P

is invertible, where e denotes the terminal object of X.

2.8.6. Let X be a topos. Every morphism f : x — y is (—2)-connected. It is (—1)-connected if it
is an effective epimorphism. It is n-connected if it is an effective epimorphism and its diagonal
morphism  — x X, z is (n — 1)-connected.

2.8.7. In a topos X, the classes of n-connected and n-truncated morphisms form an orthogonal
factorization system, for each n > —2. In particular, every morphism f in X admits a
factorization of the form f = p o4, where ¢ is n-truncated and p is n-connected.

Further, we have:
Lemma 2.8.8. Let X be a topos. A morphism f:x — y in X is invertible if and only if it is

both n-truncated and n-connected, for some n > —2.

2.9. Sites.

2.9.1. Recall the notion of Grothendieck (pre)topologies on ordinary categories from [SGA 4].
These can be adapted to the setting of (0o, 1)-categories. In fact, a topology on a category C is
equivalent to a topology on its underlying ordinary category (C)°rd®,

A site is a category equipped with a Grothendieck topology.

2.9.2. Given a topology 7 on a small category C, let S, denote the (small) set of morphisms
R <= hc (C)
for ¢ an object of C and R < hc(c) a T-covering sieve.

A 7-sheaf on C is by definition a presheaf F which is S;-local. That is, for each T-covering
sieve R < hg(c), the canonical morphism of spaces

(2.4) F(c) = Maps(hc(c),F) — Maps(R, F)
is invertible. (We also refer to this property as 7-descent.)

We say that a morphism of presheaves is a 7-local equivalence if it is an S;-local equivalence.

2.9.3. We write Sh;(C) for the full subcategory of 7-sheaves. By [Chap. 0, Proposition 2.6.15]
we obtain that Sh,(C) is an accessible localization of the arena P(C). In fact, this is an ezact
localization (hence a topos).
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2.9.4. If the topology 7 is generated by a pretopology, then the condition of 7-descent can
be phrased equivalently as follows: for every 7-covering family (fu : co — ¢)a, the canonical
morphism of spaces

(2.5) F(c) = lim T(C(ca/C)n, F)

neA

is invertible.

Here C(cq/c)s denotes the Cech nerve of the morphism Uyc, — c.
2.10. Stable categories.

2.10.1. Let C be a category. We say that C is pointed if it admits a zero object, i.e. an object
which is both terminal and initial.

2.10.2. Let C be a pointed category admitting finite colimits and limits. For any object ¢ in C,
we can form its suspension object

and its loop space object

where 0 is a zero object.

The functors (2,) form an adjoint pair; if it is an equivalence, then we say that the
category C is stable.

In this case, we will write F[1] := 2(F) and F[—1] := Q(F).

2.10.3. Equivalently, a category C as above is stable if any commutative square in C is cartesian
if and only if it is cocartesian.

2.10.4. The most fundamental example of a stable category is Spt, the category of spectra. This
is obtained from the category of spaces by a formal procedure called stabilization. In particular,
there is a canonical adjoint pair

3¢ Spe — Spt, Q% : Spt — Spe.

2.10.5. There is a canonical t-structure on the category of spectra.

A spectrum E is n-connected (resp. n-connective) if m;(E) = 0 for each ¢ < n (resp. for each
i < n). It is n-coconnected (resp. n-coconnective) if m;(E) = 0 for each ¢ > n (resp. for each
i>n).

We will abbreviate the term 0-connective (= (—1)-connected) to connective, and 0-coconnective
(= 1-coconnected) to coconnective.
2.10.6. Commutative monoids in the category Spt are E.,-ring spectra.

(We will not use this notion in this text.)
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3. (00, 2)-CATEGORIES

The references for this section are [GR16] and [Lur09c].

3.1. (00, 2)-categories as complete Segal spaces. We will use complete Segal spaces in
(00, 1)-Cat to model (oo, 2)-categories.

3.1.1. An (00, 2)-category C is a complete Segal space in the (0o, 1)-category of (oo, 1)-categories.
That is, it is the datum of a simplicial object Seq,(C) in the (oo, 1)-category of (0o, 1)-categories
satisfying the following conditions:

(1) The (o0, 1)-category Seqq(C) is an co-groupoid.

(2) The canonical functor Seq,, ., (C) — Seq,,, (C) Xseq, (c) Seq,,(C) is an equivalence.

(3) The Segal space (Seq, (C))S?¢ is complete (see [GR16, Chap. A.1]).

We will write (00, 2)-Cat for the (0o, 1)-category of (oo, 2)-categories.

3.1.2. There are other models for the (0o, 1)-category of (0o, 2)-categories.

For example, the (0o, 1)-category (oo, 2)-Cat is equivalent to the (0o, 1)-category of 2-fold
complete Segal spaces. This equivalence is induced by an equivalence between the (0o, 1)-category
of (00, 1)-categories and that of 1-fold complete Segal spaces (i.e. complete Segal spaces in the
(00, 1)-category of spaces); see [JTOT7].

It follows, according to [Haul5], that it is also equivalent to the (oo, 1)-category of (oo, 1)-
categories enriched in (oo, 1)-Cat.

3.1.3. Any ordinary 2-category can be viewed as an (0o, 2)-category where Seq; (C) is an ordinary
category. This defines a fully faithful embedding from the (oo, 1)-category of ordinary 2-categories
to the (00, 1)-category of (0o, 2)-categories.

Conversely, any (oo, 2)-category gives rise to an ordinary 2-category (C)2°'", This defines
a left adjoint to the above embedding.

3.1.4. Given an (0o, 2)-category C, there is an (0o, 2)-category (C)*°P obtained by reversing the
directions of 1-morphisms, an (oo, 2)-category (C)%°P obtained by reversing the directions of
2-morphisms, and an (0o, 2)-category (C)'¥2-°P obtained by reversing the directions of both 1-
and 2-morphisms.

3.1.5. There is an (oo, 2)-category (oo, 1)-Cat of (oo, 1)-categories, whose underlying (oo, 1)-
category coincides with (0o, 1)-Cat.

3.1.6. In the sequel, the term “2-category” will mean (oo, 2)-category by default; when we need
to refer to the classical notion of 2-category, we will say “(2,2)-category”.

3.2. Passage to right/left adjoints.

3.2.1. Recall that in an 2-category C, there is a notion of adjunction between two objects x and
.

A pair (f: oz — y,g: y — z) forms an adjunction if and only if it defines an adjunction in
the underlying ordinary 2-category (C)2°rd®.
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3.2.2. Let C and D be 2-categories. We say that a 2-functor u : C — D is right-adjointable
(resp. left-adjointable) if, for each 1-morphism f : x — y in C, its image u(f) admits a right
adjoint (resp. a left adjoint) in the 2-category ID.

3.2.3. Let Maps, (5, T) denote the space of right-adjointable 2-functors. Let Maps, (53, T) denote
the space of left-adjointable 2-functors.

Lemma 3.2.4. There is a canonical isomorphism of spaces
Maps, (8, T) = Maps, (($)'42°P, T).
Given a right-adjointable 2-functor u : $ — T, we will call the corresponding functor
Uy 1 (8)1%%°P 5 T the functor obtained from u by passage to right adjoints.
Dually, given a left-adjointable 2-functor v : $ — T, we will call the corresponding functor

uy @ ($)M2°P — T the functor obtained from u by passage to left adjoints.

3.3. Adjointable squares. In this section we will formulate the notion of horizontally/vertically
left/right-adjointable square in a 2-category, which we will be used in the text to express base
change formulas.
3.3.1. We fix an (0o, 2)-category C.
Let © be a square in C
CcC ——C
(31> J{’U lv/
D 5 D
which commutes up to an invertible 2-morphism
v'u = u'v.

Suppose that v (resp. v') admits a right adjoint v® (resp. (v)}) in C. Then the square
@'uert:R

CcC —=C
52 ol o]
D, D
commutes up to the 2-morphism
(3.3) w® = (V) B = ()R v — ()R,
where the first morphism is obtained by precomposition with the counit of the adjunction,

the isomorphism in the middle is given by the commutativity of the square ©, and the final
morphism is given by the unit of the adjunction.

If this 2-morphism is invertible, then we say that the square © is vertically right-adjointable.
3.3.2. Similarly if v (resp. v) admits a left adjoint v™ (resp. (v')¥), then the square @vert:L

CcC s

(3.4) T ]

commutes up to the 2-morphism

(3.5) (W — ()l v & ()R u™ — uob
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If this is invertible, we say that the square © is wvertically left-adjointable.

3.3.3. If u (resp. u') admits a right adjoint u®® (resp. (u/)}), then the square ©"°r=R
C+——C

(36) |
D W D

commutes up to a 2-morphism

(3.7) vult = (u)Rv'.

If it is invertible, we say that © is horizontally right-adjointable.

Similarly, if v (resp. u/) admits a left adjoint u® (resp. (u’)%), then the square @horizL

C+———C
(3.8) |» ‘ &
D W D
commutes up to a 2-morphism
(3.9) (u)lv" — vut.

If it is invertible, we say that © is horizontally left-adjointable.

3.3.4. We have:

Lemma 3.3.5. Suppose that in the square © (3.1), u (resp. u') admits a right adjoint u®
(resp. (u')R), and v (resp. v') admits a left adjoint v (resp. (v')). Then © is vertically
left-adjointable if and only if it is horizontally right-adjointable.

Proof. The square ©U¢™*L (resp. ©"°"*R) commutes up to a 2-morphism «a : (v/)Fu/ — uv®
(resp. B :vul — (u/)Rv'). The category of left adjoint functors C — D is equivalent to the
category of right adjoint functors D — C (see [GR16, Chap. A.3, Cor. 3.1.9]), and under this
equivalence the morphism « corresponds to the morphism . 0

3.4. The 2-category of arena modules.

3.4.1. Let Arenamod denote the closed symmetric monoidal (oo, 1)-category of pairs (O, C)
with O a symmetric monoidal arena and C an O-module arena.

We refer to [Lurl6, Def. 3.3.3.8], where it is defined as an oo-operad, [Lurl6, Thm. 4.5.2.1],
where it is shown to be a symmetric monoidal (0o, 1)-category, and [Lurl6, Cor. 4.4.2.15], where
its symmetric monoidal structure is shown to be closed.

3.4.2. There is a canonical functor
(3.10) Arrows(Arenamon) — Arenamod
defined on objects by the assignment

(u: 00— 0~ (0,0,

where O’ is viewed as an O-module via the symmetric monoidal functor u.
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3.4.3. Let Arenamod denote the (0o, 2)-category described informally as follows:

Its objects are the same as those of Arenamod, i.e. pairs (O, C) with O a symmetric
monoidal arena and C an O-module arena.

Its 1-morphisms (O, C) — (O’,C’) are the same as those of Arenamod, i.e. pairs (u,v)
with u : O — O’ a symmetric monoidal morphism of arenas and v : C — C’ a morphism of
O-module categories, where C’ is viewed as a O-module via the functor u.

Its 2-morphisms (u,v) — (u/,v’) are pairs (a, 8) with « : v — v’ a symmetric monoidal
natural transformation, and 8 : v — v’ an O-linear natural transformation.

We refer to [Haul4] for the precise definition as a 2-fold complete Segal space.
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4. DERIVED SCHEMES

In this section we give the definition of derived schemes, following the functorial approach
of Toén—Vezzosi [TV08] [MT10]. It is also possible to give a definition using locally ringed
(00, 1)-toposes, in line with the definition of classical schemes based on locally ringed toposes;
see [Lur09al.

4.1. Simplicial commutative algebra.

4.1.1. Consider the full subcategory Poly of the category of (small) commutative rings, spanned
by the polynomial algebras Z[T4,...,T,] (n = 0).

Definition 4.1.2. A simplicial commutative ring is a weakly inductive presheaf of spaces on
Poly.

In other words, it is a presheaf which sends finite coproducts in Poly to products; see [Chap.
0, Paragraph 2.5].

Let SCRing denote the category of simplicial commutative rings, a full subcategory of the
category of presheaves on Poly. Recall from [Chap. 0, Proposition 2.5.6] that this is the free
completion of Poly by sifted colimits; in particular, it is an arena.

Remark 4.1.3. One can show that SCRing is the (oo, 1)-category obtained from the ordinary
category of simplicial objects in the category of commutative rings, by inverting weak homotopy
equivalences (i.e. taking an (oo, 1)-categorical localization). See [Lur09a, Rmk. 4.1.2].

4.1.4. There is a canonical functor A — Agy., sending a simplicial commutative ring to its
underlying space.

This is defined by evaluation on the polynomial ring Z[T], i.e. Asp. := A(Z[T]). Note that
this is conservative.

The space Asy. has a canonical base point pt — Asy., induced by the canonical homomor-
phism Z — Z[T]. We write H""(A) for its nth homotopy group. There is a canonical structure
of (ordinary) commutative ring on H°(A), and of H(A)-module on each H="(A).

4.1.5. We also have the Eilenberg-Mac Lane functor A — As,, sending a simplicial commutative
ring to its associated (connective) E-ring spectrum.

This is obtained from the universal property of SCRing (see [Chap. 0, Proposition 2.5.6]).
Hence it is characterized as the unique functor that commutes with sifted colimits and sends
a polynomial ring R = Z[Ty,...,T,] to its Eilenberg—Mac Lane spectrum Rs,;. In fact, it
commutes with arbitrary small colimits and limits, and is conservative.

The underlying space of the spectrum Agy; coincides with As,.. The spectrum Agy, is
connective (i.e. H"(Agp:) = 0 for n > 0).

4.1.6. Given a simplicial commutative ring A, an A-module is a (left) module over the E.o-ring
spectrum As,;. We write A-mod for the category of A-modules, which is a stable symmetric
monoidal arena.

We denote H™*(M) := 7;(M) for each i.

Remark 4.1.7. If A is an ordinary commutative ring, then the underlying (1, 1)-category of
A-mod coincides with the derived category of the abelian category of A-modules.

We let A-alg denote the category of A-algebras, i.e. the slice category A\SCRing.
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4.1.8. Note that if we took presheaves of sets in [Chap. 0, Definition 4.1.2], we would recover the
category of (ordinary) commutative rings. In particular, the O-truncated simplicial commutative
rings are precisely ordinary commutative rings. The O-truncation functor, left adjoint to the
inclusion of ordinary commutative rings, is nothing else than the functor A + HO(A).

4.1.9. Let A be a simplicial commutative ring. For any connective A-module M, we will write
Sym, (M) for the free A-algebra generated by M. That is, we have a canonical isomorphism

MapSA—alg(SyInA(M)v B) ’N_> Ma’pSA—mod(M? B)

for each A-algebra B.
4.2. Prestacks.

4.2.1. A prestack is a presheaf of spaces on the category (SCRing)°P, i.e. a functor SCRing —
Spc (see [Chap. 0, Paragraph 2.6]).

We write Prestk for the category of prestacks.

4.2.2. Given a simplicial commutative ring A, we will write Spec(A) for the prestack represented
by A. We say that a prestack is an affine scheme if it is represented by a simplicial commutative
ring, and write Sch,g for the full subcategory of Prestk spanned by affine schemes.

Let S be a prestack. For a simplicial commutative ring A, we say that an A-point of S is a
morphism s : Spec(A) — S, or equivalently a point of the space S(A).

4.2.3. A classical® prestack is a presheaf on the opposite of the ordinary category of commutative
rings.

Given a prestack S, let S.; denote its underlying classical prestack, defined as the restriction to
ordinary commutative rings. The functor S — S¢; admits a fully faithful left adjoint, embedding
the category of classical prestacks as a full subcategory of prestacks.

We refer to prestacks of the form Spec(A), with A an ordinary commutative ring, as classical
affine schemes. The functor S — S¢; sends affine schemes to classical affine schemes: we have
Spec(A)q = Spec(HY(A)) for any simplicial commutative ring A.

4.3. Quasi-coherent sheaves.

4.3.1. Let S = Spec(A) be an affine scheme. A quasi-coherent module on S is the datum of an
A-module. We write Ogpec(a) for the quasi-coherent module given by A, viewed as a module
over itself.

4.3.2. Let S be a prestack. A quasi-coherent Og-module consists of the following data:

(1) For every affine scheme Spec(A) and every morphism s : Spec(A) — S, a quasi-coherent
module F5 on Ogpec(a)-

8The adjective classical refers to the fact that they are defined on non-derived objects (ordinary commutative
rings, not simplicial commutative rings). In the literature they have been studied by C. Simpson and others
under the name higher prestacks, since they may take values in arbitrary spaces, not just groupoids. In our
terminology, prestacks are “higher” by default, and “non-higher” prestacks are 1-truncated prestacks.
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(2) For every pair of morphisms s : Spec(A) — S, s’ : Spec(B) — S fitting into a commutative
triangle

Spec(A) —— S,

b=

Spec(B)
an isomorphism f*(Fy) — F.

(3) A homotopy coherent system of compatibilities between all such isomorphisms.

4.3.3. More precisely, we define the category Qcoh(S) as the limit
Qcoh(S) := lim  Qcoh(Spec(A))
Spec(A)—S

in the category of arenas.
This category is stable, as the property of stability is stable under limits of (oo, 1)-categories.

Better yet, we can define a presheaf of symmetric monoidal arenas S — Qcoh(S) as the right
Kan extension of the presheaf A — A-mod along the Yoneda embedding (SCRing)°® — Prestk.

In particular, for each morphism of prestacks f, we have a symmetric monoidal colimit-
preserving functor f*, the inverse image functor, and its right adjoint f., the direct image
functor.

4.3.4. Let S be a prestack. We write Og for the quasi-coherent module defined by Os s = Ogpec(a)
for each affine scheme Spec(A) and each A-point s : Spec(A) — S. This is the unit of the
symmetric monoidal structure.

Given a quasi-coherent module F on S, we write I'(X, F) for the space of sections over an
S-scheme X. This is by definition the mapping space Maps(Ox, p*(F)), where p : X — S is the
structural morphism.

4.4. Stacks.

4.4.1. Let f: T — S be a morphism of affine schemes, S = Spec(A), T = Spec(B).

Definition 4.4.2. (i) The morphism f is of finite presentation if B is compact in the category
of A-algebras.

(i) The morphism f is flat if the functor f* : Qcoh(S) — Qcoh(T) is exact. Equivalently,
the morphism fo : Spec(H°(B)) — Spec(H°(A)) of underlying classical affine schemes is flat
(i.e. HY(B) is flat, in the usual sense, as an H°(A)-module), and the canonical morphism
H™'(A) ®poca) H(B) — H™*(B) is invertible for each i.

(i4i) The morphism f is an open immersion if it is a flat monomorphism® of finite presenta-
tion. Equivalently, it is flat and the morphism fo : Spec(H°(B)) — Spec(H°(A)) of underlying
classical schemes is an open immersion (in the classical sense).

4.4.3. The Zariski topology on Sch,g is the Grothendieck topology associated to the following
pretopology. A family of morphisms of affine schemes (j, : Uy — X)aea is Zariski covering if and
only if each j, is an open immersion, and the family of functors (j,)* : Qcoh(X) — Qcoh(U,)
is conservative.

Definition 4.4.4. A stack is a prestack satisfying descent with respect to the Zariski topology.

9.e. the canonical morphism T — T xg T is invertible.
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We write Stk for the full subcategory of Prestk spanned by stacks.
4.5. Schemes.

4.5.1. Let j : U — S be a morphism of stacks.

Definition 4.5.2. (i) If S is affine, then j is an open immersion if it is a monomorphism, and
there exists a family (jo : Uq — S)a, with each jo an open immersion of affine schemes [Chap.
0, Definition 4.4.2] that factors through U and induces an effective epimorphism U,U, — U.

(it) For general S, the morphism j is an open immersion if for each simplicial commutative
ring A and each A-point s : Spec(A) — S, the base change U xg Spec(A) — Spec(A) is an open
immersion in the sense of (i).

4.5.3. Let S be a stack. A Zariski cover of S is a small family of open immersions of stacks
(Ja : Uy = S)4 such that the canonical morphism U,U, — S is surjective (i.e. an effective
epimorphism in the topos of stacks). If each U, is an affine scheme, we call this an affine Zariski
cover.

We define:

Definition 4.5.4. A scheme is a stack S which admits an affine Zariski cover.

We write Sch for the full subcategory of Stk spanned by schemes. It is closed under
coproducts and fibred products.

Definition 4.5.5. (i) A scheme S is quasi-compact if for any Zariski cover (jo : Uy = S)aen,
there exists a finite subset Ag C A such that the family (jo)aca, 5 still a Zariski cover.

(i) A morphism of schemes f : T — S is quasi-compact if for any simplicial commutative
ring A and any A-point s : Spec(A) — S, the scheme T xg Spec(A) is quasi-compact.

(i1i) A scheme S is quasi-separated if for any open immersions U = S and V < S, with U
and V affine, the intersection U xg'V is quasi-compact.

4.5.6. We define a classical scheme to be a Zariski sheaf of sets on the category (CRing)°P,
admitting a Zariski affine cover. This is equivalent to the definition of scheme given in [EGA Ig].

Given a scheme S, the underlying classical prestack S¢ takes values in sets, and is a classical
scheme. We therefore refer to S.; as the underlying classical scheme of S.

4.6. Closed immersions.

4.6.1. Let f:Y — X be a morphism of schemes. We say that the morphism f is affine if, for
any simplicial commutative ring A and A-point z : Spec(A) — X, the base change Y xx Spec(A)
is an affine scheme.

4.6.2. If X = Spec(A) and Y = Spec(B) are affine, the morphism f is a closed immersion if the
homomorphism A — B induces a surjection H’(A) — H?(B).

In general the morphism f is a closed immersion if it is affine, and for any simplicial
commutative ring A and A-point z : Spec(A) — X, the base change Y xx Spec(A) — Spec(A)
is a closed immersion of affine schemes.

Equivalently, f is a closed immersion if and only if it induces a closed immersion on
underlying classical schemes.
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4.6.3. Let i : Z < S be a closed immersion of schemes. Let U be the prestack defined as follows:
for a simplicial commutative ring A, its A-points are A-points s : Spec(A) — S such that the
base change Spec(A) xgZ is the empty scheme. One can show that U is a scheme, and that the
canonical morphism U — S is an open immersion.

We call j : U < S the complementary open immersion to i.
4.7. Vector bundles.

4.7.1. Just as in [Chap. 0, Paragraph 4.3], we can define a notion of quasi-coherent algebra on
a prestack S, such that the category of quasi-coherent algebras on Spec(A) coincides with the
category of A-algebras.

4.7.2. Let S be a scheme and A a quasi-coherent algebra on S. Consider the presheaf Specg(A)
on the category of schemes over S, which sends an S-scheme X with structural morphism f to
the space of quasi-coherent algebra homomorphisms Maps(f*(A), Ox).

The presheaf Specg(A) clearly satisfies Zariski descent. Hence it defines a stack over S
(there is a canonical equivalence Sh(Sch/s) = Sh(Sch) ;s = Sh(Schag)/s), which we call the
relative spectrum of the quasi-coherent algebra A.

In fact, we have:

Lemma 4.7.3. Let A be a connective quasi-coherent algebra over a scheme S. Then the stack
Specg(A) is a scheme.

This follows from functoriality in S, and the fact that for S = Spec(A) affine, we have
Specg(A) = Spec(T'(S, A)).

4.7.4. Let F be a connective quasi-coherent module on S. The (connective) quasi-coherent
algebra Symy (F) is defined by Symg, (F)s := Symg,  (Fs) for each simplicial commutative
ring A and A-point s : Spec(A) — S.

4.7.5. A connective quasi-coherent module F on S is locally free of rank n if there exists a Zariski
cover (Jo : Uy — S), such that each inverse image j* (&) is a free quasi-coherent Og_-module of
rank n, i.e. ji(F) = 0"

Given a locally free module of finite rank &F, we define:
Definition 4.7.6. The vector bundle associated to F is the S-scheme V (F) := Specg(Sym (F)).

Note that any global section s € T'(S, J) defines a section s : S — V(&) of the structural
morphism, which is a closed immersion. In particular, any vector bundle admits a zero section.

4.7.7. For an integer n > 0, we define the affine space of dimension n over a scheme S, denoted
Ag, to be the total space of the free Os-module O?":

Ag = V(05").

For any morphism of schemes f : T — S, we have A xgT = Af%. Since the structural
morphism Ag — S is flat, it follows that there is a canonical isomorphism (Ag)a = Ag .

4.7.8. The affine line AY over S is the affine space of dimension 1. Since the quasi-coherent
module Og has a unit section (being a quasi-coherent algebra), the affine line admits both a
zero and a unit section.
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5. LOCAL PROPERTIES OF MORPHISMS
The reference for this section is [TV08] [MT10].
5.1. Square-zero extensions.

5.1.1. Let p: Y — X be a morphism of affine schemes, X = Spec(A), Y = Spec(B). Given a
connective quasi-coherent module ¥ on Y, we let

Y — Yg := Spec(B® M)
denote the trivial square-zero extension of Y along F, where M = T'(Y, F).
The morphism Y < Yy is the closed immersion induced by the homomorphism B& M — B,
(b,m) — b.

5.1.2. A derivation of Y over X with values in F, is a retraction of the morphism Y < Y (in
the category of affine schemes over X). There is a canonical retraction, the trivial derivation
diyiv, defined by the morphism B — B@® M, b — (b,0).

Let Der(Y /X, F) denote the space of derivations in F.

5.1.3. Let F be a 0-connected quasi-coherent module on Y.

Any derivation d of Y/X valued in F gives rise to a square-zero extension i : Y < Yg4. This
is the closed immersion (in fact, nil-immersion'®) defined as the cobase change of the trivial
derivation along d, so that there is a cocartesian square

dtriv

Yy —— Y
(5.1) 2 |
Y Yy,
in the category of affine schemes.
5.1.4. The following important fact reduces many proofs in derived algebraic geometry to their
classical analogues, by induction along square-zero extensions.

Proposition 5.1.5. Let S = Spec(A) be an affine scheme. Then there exists a sequence of
nil-immersions of affine schemes

(5.2) Sa =887y .82 ey L S
with S~ = Spec(AZ~"), satisfying the following properties:

(i) For each n > 0, the homomorphism A — AZ~" identifies A~ as the n-truncation of
the simplicial commutative ring A.

(i) The sequence is functorial in A.

(iii) The canonical morphism A — Hm o AZ~" s invertible.

(iv) Each morphism SZ~™ « SZ~"~1 (n > 0) is a square-zero extension by a derivation
valued in H™"(0g)[n + 1].

Further, this sequence is uniquely characterized, up to isomorphism of diagrams indexed on
the poset of nonnegative integers, by the property (i).

The sequence (5.2) is often called the Postnikov tower of A.

10S¢e [Chap. 0, Paragraph 5.5].
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5.2. The cotangent sheaf.

5.2.1. Let p: Y — X be a morphism of affine schemes. We have:
Proposition 5.2.2. The functor F — Der(Y/X,F) is representable by a connective quasi-

coherent module ‘J';‘(/X onY.

The quasi-coherent module T%, /x on Y is called the (relative) cotangent sheaf of the morphism
p:Y — X. We obtain the absolute cotangent sheaf T by taking the relative cotangent sheaf of
the morphism S — Spec(Z).

5.2.3. The following fact is crucial.

Lemma 5.2.4. Let Z 5 Y L5 X be a sequence of morphisms of affine schemes. Then there is
a canonical exact triangle

(5.3) 9 Ty x) = Tzx = Ty
of quasi-coherent sheaves on Z.
In particular, we see that the relative cotangent sheaf J%, /X is the cofibre of the canonical
morphism f*(T%) — T%.
5.2.5. The cotangent sheaf of a vector bundle has a particularly simple description:

Lemma 5.2.6. Let S be an affine scheme. For any connective quasi-coherent module F on S,
we have a canonical isomorphism

“TgpecS(SymoS(ff))/S = p* (3:)5
where p denotes the structural morphism of the S-scheme Specg(Syme, (5)).
5.2.7. Let f:Y — X be a morphism of affine schemes, A a simplicial commutative ring, and
y : Spec(A) — Y an A-point. Let f(y) denote the induced A-point Spec(A) - Y — X.

The differential of f at y is the canonical morphism of quasi-coherent sheaves on Spec(A)
5.2.8. Let S be an affine scheme and let f : S — A! be a morphism, defining a global section
f € F(Sa OS)

For any simplicial commutative ring A and A-point s : Spec(A) — S, the differential of f at
s defines (by [Chap. 0, Lemma 5.2.6]) a point df; of (the underlying space of) T% .

5.2.9. Let p: Y — X be a morphism of schemes. For any simplicial commutative ring A, A-point
y : Spec(A) — Y, and 0-connected quasi-coherent module F on Y, a derivation aty of p with
values in F is a commutative triangle

Spec(A)

Spec(A) 5 Y

in the category of X-schemes.

We write Der, (Y /X, F) for the space of derivations at y.
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5.2.10. The functor F — Der, (Y /X, F) is represented by a connective quasi-coherent module
‘J';‘(/X , on Spec(A), called the relative cotangent sheaf of p at y:

Dery(Y/Xv Sr) = Mapsgcoh(SpeC(A))({‘T%k('/X,yv ‘rf)

5.2.11. Given a simplicial commutative ring A and an A-point y : Spec(A) — Y, a simplicial
commutative ring B and a B-point 3’ : Spec(B) — Y, and a morphism of affine schemes
f : Spec(B) — Spec(A) such that y o f = ¢/, we obtain a canonical morphism of quasi-coherent
modules on Spec(B)

f*(j,:’/x,y) - ‘T;'/X,y/
which is invertible.

Moreover, the data of the quasi-coherent modules T%, /X,y 85 Y varies over A-points of Y (with

A an arbitrary simplicial commutative ring), together with the above isomorphisms, is compatible
in a homotopy coherent way, and can therefore be refined to a connective quasi-coherent module
T5 /X defined on the scheme Y.

5.3. Smooth and étale morphisms.

5.3.1. Let p: Y — X be a morphism of affine schemes.

Definition 5.3.2. (i) The morphism p is étale if it is of finite presentation and the cotangent
sheaf ‘J';‘(/X 18 zero. Equivalently, p is flat and the underlying morphism of classical schemes
Dal : Yoo — Xa s étale in the sense of [EGA IV,].

(ii) The morphism p is smooth if it is of finite presentation and the complex sheaf ‘J'{,/X

18 locally free of finite rank. Equivalently, p is flat and the underlying morphism of classical
schemes pe : Yo — Xa i smooth in the sense of [EGA IV,].

In general, for a morphism of schemes p : Y — X, we define étaleness and smoothness
Zariski-locally on the source. That is:

Definition 5.3.3. The morphism p is étale (resp. smooth, flat, locally of finite presentation) if
there exists affine Zariski covers (Yo — Y)qo and (Xg — X)g together with the data of, for each
a, an index B and a morphism of affine schemes Yo — Xg which is étale (resp. smooth, flat,
locally of finite presentation) and fits in a commutative square

Ya%Xﬁ

L]

Y — X

Note that open immersions are étale, and étale morphisms are smooth.

By [Chap. 0, Lemma 5.2.6], any vector bundle E — S is smooth. In particular, affine spaces
(and hence also projective spaces) are smooth.
5.3.4. The following, a derived version of [EGA IV,, Thm. 17.11.4], is standard:

Proposition 5.3.5. A morphism p:Y — X is smooth if and only if, Zariski-locally on'Y, there
exists a factorization of p as a composite

(5.5) YL A" xX 5 X

for some integer n > 0, where q is étale and r is the canonical projection.
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Proof. Since pe1 : Yo — X is smooth, we can find, Zariski-locally on Y, sections (f;)i=1,....n of
Oy,, whose differentials dy,, /x,,(f:) form a basis of the locally free sheaf T3, ¢ = (see the proof
of [EGA IV, Thm. 17.11.4]). Choosing lifts of these sections to Oy, we obtain a morphism
q:Y — A" x X such that the morphism

q*(TZ"xX/X) - ‘K{/X

is invertible, and hence g is étale by the exact triangle (5.3). O
5.4. Deformation along square-zero extensions.

5.4.1. Let S be an affine scheme and S’ a square-zero extension of S by a derivation d : T§ — F,
for some 0-connected quasi-coherent module F. Let X be an affine scheme over S with structural
morphism p.

Definition 5.4.2. A deformation of X along the square-zero extension S — S’ is an affine
scheme X’ over S’ together with an isomorphism X — X' xg/ S.

In other words, a deformation of X is a cartesian square:

X co-3 X
S —— ¢

5.4.3. We have:

Lemma 5.4.4. The datum of a deformation of X along S < S’ is equivalent to the datum of a
null-homotopy of the composite

Txs[=1] = p*(T3) — p*(9).

Given such a null-homotopy, one obtains a derivation d’' : T% — p*(F); the deformation X’
is constructed as the square-zero extension of X along d’.

5.4.5. For example, if p is smooth, then any morphism {I;(/s[_l] — p*(F) must be null-homotopic;

hence X admits a deformation along any square-zero extension S — S’. If p is further étale,
then this deformation is unique.

5.5. Cobase change along nil-immersions.

5.5.1. A nil-immersion is a closed immersion i : Xy < X which induces an isomorphism
(Xo)el = X¢ on underlying classical schemes.
5.5.2. Let i : Xg — X be a nil-immersion and f : Xg — Yo a morphism of schemes.

We have:

Lemma 5.5.3. (i) The cobase change of f along the nil-immersion i is representable in the
category of schemes. That is, there exists a scheme Y fitting in the cocartesian square

X —— X

I

Yo — V.

(i) If f is affine then the morphism Yo — Y is a closed nil-immersion.

(iii) If f is an open immersion, then so is the morphism X — Y.
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5.6. Lifting smooth morphisms along closed immersions.

5.6.1. The following is a derived version of [EGA IV, Prop. 18.1.1]:

Proposition 5.6.2. Leti:7Z — S be a closed immersion of schemes. For any smooth (resp.
étale) morphism p : X — Z, there exists, Zariski-locally on X, a smooth (resp. étale) morphism
q:Y — S, and a cartesian square

— Y

q

N bt

— S.

Proof. First we consider the étale case. The question being Zariski-local, we may assume that S,
Z and X are affine. Consider the Postnikov towers ([Chap. 0, Proposition 5.1.5])

Sa=858""381le. ... 38 " ... S
Z01:Z>0;>Z>*1;}...c_>z>*"c_>...<_>z

for S and Z, respectively. Since p is flat, the Postnikov tower for X is identified with the base
change of the Postnikov tower of Z.

For a fixed integer n > 0, consider the following claim:

x) There exists, Zariski—locally on )(> n’ an étale morphism q> o Y> n— S> "™ and a
cartesian square

Note that it suffices to show that (*) holds for each n > 0, since we can conclude by passing
to filtered colimits. For n = 0, the claim is [EGA IV, Prop. 18.1.1].

We proceed by induction; assume that the claim holds for a fixed n. We define Y>~"~! to
be the deformation of Y>~" along the square-zero extension S*~" <+ S~"~1 which exists by
[Chap. 0, Lemma 5.4.4]. Note that XZ~"~! is itself a deformation of X*~" along the square-
zero extension ZZ~™ «— ZZ~ "1, That the resulting square is cartesian is a straightforward
verification.

For the smooth case, the claim follows from the étale case and from [Chap. 0, Proposi-
tion 5.3.5]. O

6. GLOBAL PROPERTIES OF MORPHISMS

The reference for this section is [GR16, Chap. II.2].
6.1. Proper morphisms.

6.1.1. Let f: Y — X be a morphism of schemes. We say that f is of finite type if the underlying
morphism of classical schemes f is of finite type in the sense of [EGA Ig].

We say that f is separated if the diagonal morphism Y — Y xx Y is a closed immersion.
Equivalently, the underlying morphism of classical schemes f. is separated in the sense of [EGA

Is).

The morphism f is proper if the induced morphism of underlying classical schemes f :
Yo — X is proper in the sense of [EGA TI].
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6.1.2. Let € be a locally free module of finite rank over a scheme S.

Consider the presheaf on the category of S-schemes sending an S-scheme X with structural
morphism f to the space of direct summands of f*(&)Y which are locally free of rank 1.

This satisfies Zariski descent and corresponds to a stack over S which we denote P(&) and
call the projective bundle associated to €. One can construct an affine Zariski cover of P(€), so
that it is in fact a scheme.

Further, since the structural morphism P(&) — S is flat, we have P(&)q = P(&€) Xs S =
P(i*€), where i : S < S is the canonical inclusion. For classical schemes, our construction
coincides with that of [EGA Ig] by definition, and in [EGA II] it is proved that P(i*€) — S is
proper. Hence we obtain:

Lemma 6.1.3. The stack P(&) is a scheme, and the structural morphism p : P(€) — S is
proper.
6.1.4. Taking € = O?"H, we obtain the projective space of dimension n over S:
Py .= P(OJ")
for each n > 0.

In this case, an affine Zariski cover can be chosen of the form (U; < P%);=o,..., where for
each i there is an isomorphism U; = Ag.

Also, [Chap. 0, Lemma 6.1.3] can be deduced in a less direct way from the following
observations: (1) for S = Spec(Z), P% coincides with the classical proper S-scheme constructed
in [EGA Ig]; (2) the construction is functorial, i.e. Pg xgT = P4 for any morphism T — S; (3)
the structural morphism Pg — S is flat, so that (Pg)a = Pg xsSa = Pg .

6.1.5. In particular, the projective line Pé fits into a cartesian and cocartesian square of schemes
(A" — Al
Ay — Py

where (AL)* denotes the complement of the zero section S < A'.
6.2. Closure.

6.2.1. Let f : Y — X be a morphism of schemes. Let Closed(f) denote the category of
factorizations

with ¢ a closed immersion.
We have:
Lemma 6.2.2. The category Closed(f) admits an initial object.

This initial object gives in particular a closed immersion 4 : f(Y) < X, which is called the
closure of f.

If f is a closed immersion, then the canonical morphism Y — f(Y) is invertible.
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6.2.3. Let X" % X' L X be a sequence of morphisms of schemes. We have the following
transitivity property of closure:
Lemma 6.2.4. The canonical morphism
fog(X") = f(g(X"))
is invertible, where f': g(X") — X is the restriction of f.

6.3. Compactifications of morphisms.

6.3.1. Recall the following definition from [SGA 4, Exp. XVII, 3.2.5].
Definition 6.3.2. Let f : Y — X be a morphism of schemes. A compactification of f is a

commutative triangle
y — 1 .x
Y/

where j is an open immersion and [’ is proper.

A morphism of compactifications is a morphism of commutative triangles. We write
Compact(f) for the category of compactifications of f.

6.3.3. In the setting of classical schemes, the category of compactifications Compact(f) is
cofiltered [SGA 4, Exp. XVII, Prop. 3.2.6], and hence contractible, for any separated and of
finite type morphism f between quasi-compact quasi-separated schemes.

In the derived setting, we have the following statement, demonstrated in [GR16, Book-11.2,
Prop. 2.1.6]:

Proposition 6.3.4. Let f : Y — X be a separated morphism of finite type between quasi-compact
quasi-separated schemes. Then the category Compact(f) is contractible.
Proof. The proof of loc. cit. applies mutatis mutandis. We briefly recall the argument here.

First, one considers the full subcategory of dense compactifications, for which the open
immersion j : Y < Y’ induces an isomorphism j(Y) — Y’ on the closure. Given any compacti-

fication (Y 5Ly - X), we can form a dense compactification by replacing j with Y — j(Y).
This provides a right adjoint to the inclusion of this subcategory, so it suffices to show that this
subcategory is contractible!!.

By the classical Nagata compactification theorem, as generalized to quasi-compact quasi-
separated schemes by Deligne [Con07], the morphism fo; : Yo — X admits a compactification
(Ya — Y., — Xa). We define Y’ to be the cobase change of Y., along the nil-immersion
Y. — Y. This exists by [Chap. 0, Lemma 5.5.3] and defines a compactification (Y — Y’ — X)
of f. Taking the associated dense compactification, this shows that the category of dense
compactifications is not empty. Hence it suffices to show that it admits binary products.

For this we take two dense compactifications (Y — Y] — X) and (Y — Y, — X). Their
product is given by the dense compactification defined by the closure of Y inside the fibred
product Y| xx Y5. O

HRecall that an adjunction of (oo, 1)-categories induces isomorphisms on underlying co-groupoids.
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1. INTRODUCTION

1.1. Motivic spaces.

1.1.1. Let S be a derived scheme. A motivic space over S is a presheaf of spaces F on the category
of smooth derived S-schemes, satisfying the properties of Nisnevich descent and A'-homotopy
muariance.

1.1.2. Nisnevich descent can be formulated equivalently as the following excision property (see
[Chap. 1, Proposition 2.2.6)):

Consider a Nisnevich square, i.e. a cartesian square of smooth derived S-schemes

W —YV

(1.1) | I»

U$>X

with j an open immersion and p étale, and the induced morphism p~1(X — U) — X — U an
isomorphism of underlying reduced classical schemes. Then the induced commutative square of
spaces

I'(X,5) — 1(U,7)
T(V,F) — I(W,7)

is cartesian.

1.1.3. Homotopy invariance is the condition that, for any smooth derived S-scheme X, the
canonical morphism of spaces

I'(X,7) - T(A! x X, )

is invertible.

1.1.4. Let H(S) denote the category of motivic spaces over S. It is easy to see that the assignment
S — H(S) admits the following functorialities:

Given a morphism f : T — S of derived schemes, there is an inverse image functor
f*H(S) = H(T)
which is left adjoint to a direct image functor

fo : H(T) = H(S).

1.1.5. If f is smooth, there is a “bonus” operation
fy H(T) = H(S),
left adjoint to f*.

This operation is compatible with the operations (f*, f., ®, Hom) in the sense that it satisfies
various base change and projection formulas; see [Chap. 1, Sect. 6].

1.2. Motivic spectra.
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1.2.1. Choose a family of pointed motivic spaces Tg over each derived scheme S, together with
isomorphisms
f*(Ts) = T

for each morphism of derived schemes f : T — S (and a homotopy coherent system of compati-
bilities between these isomorphisms).

For example, we can take the family of motivic spaces represented by projective lines P§,
pointed at co. These are isomorphic to the Thom spaces Thg(A{) (see [Chap. 1, Sect. 8]).

1.2.2. A motivic T-spectrum over S is the data of a sequence of pointed motivic spaces (F,,)n>0
over S, and isomorphisms

(6779 ?n 1) Qg'(gjn+1)

for each integer n > 0, together with a homotopy coherent system of compatibilities between
these isomorphisms. Here F — Qs (F) denotes the T-loop space functor.

1.2.3. The category SH4(S) of motivic Tg-spectra can be described as the result of formally
inverting the object Ts with respect to the monoidal product, in the sense of [Rob15]. In
particular, it admits a canonical symmetric monoidal structure, and there is a canonical
symmetric monoidal functor

2L H(S)e = SH4(S)

which has the universal property of being initial in the category of symmetric monoidal functors
which send Tg to an invertible object.

1.2.4. Our functorialities (f*, fs, f3) extend to the assignment S +— SHg(S). Hence we have
inverse image functors fg,, for any morphism of schemes f, which admit right adjoints fSH
(resp. left adjoints ffH, when f is smooth).

1.3. The localization theorem.

1.3.1. The main result of this chapter can be stated as follows.

Theorem 1.3.2 (Localization). Let i:Z < S be a closed immersion of derived schemes with
quasi-compact open complement j : U < S. Then the following statements hold:

(1) For any motivic space F over S, there is a canonical cocartesian square
J2*(F) —— F
(1.2) | l
Jsi* (es) — 1" (9),
where eg denotes the terminal motivic space over S.

(2) For any pointed motivic space (F,x) over S, there is a canonical cofibre sequence

(1.3) Jei"(F,x) = (F,2) = ii"(F, ).

(8) For any motivic Tg-spectrum E, there is a canonical exact triangle

(1.4) J2i"(E) = E — i,i"(E).

This is the combination of [Chap. 1, Theorem 7.4.3], [Chap. 1, Corollary 7.4.5], and [Chap.
1, Corollary 7.4.7].
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1.3.3. Over classical schemes (noetherian of finite Krull dimension), this theorem was demon-
strated by Morel-Voevodsky (see [MV99]). Our proof has the same general flavour, but we
make some parts of the argument more robust, so that it survives in the derived setting.

When we take a closed immersion i : Z — S of classical schemes, we recover a proof of
the localization property for classical schemes without any noetherian or finite dimensional
assumptions.

The point is that over a general base, our definition is not equivalent to the definition of
Morel-Voevodsky. We only impose descent with respect to Cech covers, instead of arbitrary
hypercovers. The latter condition, called hyperdescent, is a priori much stronger, except over
noetherian finite-dimensional schemes, where they coincide. We refer to [Lurll] and [Hoy15,
Appendix C] for an explanation of this distinction.

1.3.4. Since the underlying classical scheme of a derived scheme is a closed subscheme with
empty complement, an immediate consequence of this result is that the unstable and stable
motivic homotopy categories of a derived scheme coincide with those of its underlying classical
scheme.

Corollary 1.3.5 (Topological invariance). Let S be a derived scheme, and write i : S < S for
the inclusion of the underlying classical scheme. Then the adjunctions

5, He(S) = Ha(Sa), i : Ha(Sa1) — Hae(S),
i%q : SHas(S) = SH7.(Sa), S : SH.(Sa) — SHas(S)

are equivalences of (00, 1)-categories.

1.4. The exceptional operations for closed immersions.

1.4.1. In Chapter 2, we will construct the exceptional functorialities (f, f') on the categories
SH(S) (together with the full formalism of six operations).

In the case of closed immersions i, the exceptional direct image 4, coincides with i, by
definition. We will prove (see [Chap. 1, Corollary 7.3.3]) that this admits a right adjoint 4', the
exceptional inverse image functor.

1.4.2. Using the localization theorem, we will verify that these operations (i,4') satisfy all
the desired compatibilities with the other operations (f*, f.,®, Hom), i.e. base change and
projection formulas. See [Chap. 1, Paragraph 7.5], [Chap. 1, Paragraph 7.6], and [Chap. 1,
Paragraph 7.7].

These will be used in a critical way in Chapter 2 to obtain the formalism of six operations.

1.5. Organization of this chapter. In Sections 1-4, we construct the categories of motivic
spaces and spectra, and study their basic properties. In applications it is useful to consider
T-spectra with respect to general T, though we will obtain the full formalism of six operations
in the case T = P!,

Section 5 deals with the operations f* (inverse image) and f, (direct image). In Section 6
we consider an extra operation py, not included in the “six operations”, associated to smooth
morphisms p.

In Section 7 we construct the exceptional inverse image functor ' for closed immersions.
We also state the Morel-Voevodsky localization theorem and deduce some consequences.

In Section 8 we introduce the operation of Thom (de)suspension with respect to a vector
bundle E. We show that the Thom space of the affine line is P'.



1. INTRODUCTION

Section 9 deals with the proof of the localization theorem.

47
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2. MOTIVIC SPACES

2.1. Fibred spaces.

2.1.1. Let S be a derived scheme! and write Smyg for the category of smooth schemes (of
finite presentation) over S. Throughout the text, we redefine “smooth” as “smooth of finite
presentation”.

A Sm-fibred space over S is the datum of a presheaf of spaces on the category Sm/s. We

will abbreviate this to “fibred space” or even “space” when there is no risk of confusion.?

Given a space F over S, we will write I'(X, F) for the space of sections over a smooth
S-scheme X.

2.1.2. Let Spc(S) denote the category of spaces over S. Recall the following from [Chap. 0,
Sect. 2]:

The category Spc(S) is a topos, hence a fortiori a cartesian monoidal arena® with the
property of universality of colimits.

Every smooth S-scheme X represents a space hg(X), with I'(Y,hg(X)) = Mapsg(Y, X)
for each smooth S-scheme Y. The assignment X +— hg(X) defines a fully faithful functor
Smys — Spc(8) (the Yoneda embedding) and induces by pre-composition a canonical equivalence

(2.1) Functy(Spe(S), D) = Funct(Smys, D)

for each cocomplete category D. In other words the category Spc(S) is freely generated under
colimits by the representable spaces.

2.1.3. We will denote by eg := €57 (resp. @ := @57°) the terminal object (resp. initial object).
We write xg for the monoidal product on Spe(S), whose unit object lgp ¢ is the terminal

object es. We denote the internal hom by Homg := Hom3"*.

2.2. Nisnevich descent.

2.2.1. A Nisnevich square over S is a cartesian square of smooth S-schemes

UXXV°—>V

(2:2) [

U—7 X

such that j is an open immersion, p is étale, and there exists a closed immersion Z — X
complementary to j such that the induced morphism p~!(Z) — Z is invertible.

The Nisnevich topology on the category Sm/g is generated by (i) the empty family over
the empty scheme &; and (ii) families {j, p} over a smooth S-scheme X, where j and p form a
Nisnevich square as in (2.2).

Ias per our conventions we will omit the adjective “derived” in the sequel.

2The explanation for this terminology is the equivalence, provided by the Grothendieck construction
(“straightening/unstraightening”), between presheaves on Sm,g and cartesian fibrations in spaces over Sm/g.

3Recall that by the term arena, we mean locally presentable (0o, 1)-category; a morphism of arenas is a
functor that commutes with colimits. See [Chap. 0, Paragraph 2.6].
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2.2.2. Recall from [Chap. 0, Paragraph 2.9] that a fibred space F satisfies Nisnevich descent, or
is Nisnevich-local, if for each Nisnevich covering family (f, : Xo — X)a, the canonical morphism
of spaces

(2.3) I'(X,9) = lim I(C(Xa/X)n, )
neA

is invertible, where C(X,/X)e denotes the Cech nerve of the morphism L, X, — X. Equivalently,
for every Nisnevich covering sieve R < hg(X), the canonical morphism

(2.4) (X, F) — Maps(R, F)

is invertible.

2.2.3. A morphism F — JF’ of spaces over S is a Nisnevich-local equivalence if the induced
morphism
Liis(F) = Lvis(F)
is invertible, or equivalently if for every Nisnevich-local space G, the canonical morphism of
spaces
Maps(9, F) — Maps(G, F')

is invertible.

We will write Speys(S) for the topos of Nisnevich-local spaces. This is an exact localization
of Spc(S), i.e. the inclusion admits an exact left adjoint

LNis : SpC(S) — SpCNiS(S)'

2.2.4. We say that a fibred space F satisfies Nisnevich excision if (i) the space I'(&,F) is
contractible; and (ii) for all smooth S-schemes X and all Nisnevich squares of the form (2.2),
the commutative square of spaces

'x,5 — I(U,9)
(2.5) l l
NV,F) —— I(Uxx V,5)
is cartesian.
Note that the property of Nisnevich excision is stable by filtered colimits (since filtered
colimits commute with finite limits in any topos).
2.2.5. By [AHW15, Thm. 3.2.5]*, we have:
Proposition 2.2.6. Let F be a fibred space over a scheme S. Then F satisfies Nisnevich descent
if and only if it satisfies Nisnevich excision.
2.2.7. The following lemma follows from [Lur09b, Prop. 5.5.8.10, (3)]:

Lemma 2.2.8. Let (X, )q be a finite family of smooth S-schemes. Then the canonical morphism
of spaces over S
LJ hs(Xa) — hs(u Xa)

1s invertible.

By [Lur09b, Lem. 5.5.8.14] it follows that the category Spey;s(S) is generated under sifted
colimits by the representables. In fact, we can say even more:

4The statement is in the language of model categories, but the proof works mutatis mutandis in the setting
of (00, 1)-categories.
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Proposition 2.2.9. Let S be a scheme. Then the category Spcy;s(S) is generated under sifted
colimits by the representable spaces hg(X), where X is a smooth S-scheme which is affine®.

Proof. Let hg(X) be a representable space over S. Since hg(X) satisfies Nisnevich descent, we
can assume X is separated over S, by choosing an affine Zariski cover of X where the pairwise
intersections are separated. Then we repeat the same argument to assume X is affine, by
choosing an affine cover where the pairwise intersections are affine. O

2.3. Al-homotopy invariance.

2.3.1. A space F over S is Al-homotopy invariant if for every smooth S-scheme X, the canonical
morphism of spaces

I'(X,7) - T(A! x X, )
is invertible. Here A! denotes the affine line Spec(Z[t]) as usual.

Let Spca:1(S) denote the full subcategory of Spc(S) spanned by A'-homotopy invariant
spaces over S. This is an accessible localization at a small set of morphisms, and in particular
the inclusion admits a left adjoint

(2.6) La: : Spe(S) = Speaa(S)

called the A!l-localization functor.

Note that the property of A'-homotopy invariance is stable by small colimits, since colimits
of presheaves are computed sectionwise. In particular, the inclusion Spcai1(S) < Spe(S) also
admits a right adjoint.

2.3.2. A morphism F — J’ of spaces over S is an A'-homotopy equivalence if the induced
morphism

Lai(F) = Lar(5)
is invertible, or equivalently if for every A'-homotopy invariant space G, the canonical morphism
of spaces
Maps(§, F) — Maps(9,F")
is invertible.

Let ig (resp. i1) denote the zero section (resp. unit section) S < A! x S. Given two
morphisms f, g : F = G of spaces over S, an elementary A'-homotopy from f to g is a morphism

¢:hg(A' xS)xF =G

such that the restriction to F = hg(S) x F along ig (resp. 41) coincides with f (resp. g). We
say that f and ¢ are A'-homotopic if there exists a sequence of elementary A'-homotopies
connecting them. Note that in this case the induced morphisms La:(F) = La1(9) coincide.

A morphism f : F — G of spaces over S is called a strict Al-homotopy equivalence if there
exists a morphism ¢ : § — F such that the composites f o g and g o f are A'-homotopic to the
identities. Note that strict A'-homotopy equivalences are A'-homotopy equivalences.

5In an absolute sense, i.e. affine over Spec(Z).
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2.3.3. Let Ag denote the cosimplicial fibred space over S associated to the interval AL, in the
sense of [MV99, §2.3]. Hence A¢ ~ AY for each n. Then we have:

Proposition 2.3.4. (i) For each space F over S there is a canonical identification

2.7) Lai(9) = lim Homg(hs(AZ),9)
[n]eAcr

and in particular, for each smooth S-scheme X, there are canonical isomorphisms of spaces
X, La1(F))= 1 g .
(X,Lai(@) = liy T(ALxX,5)
[n]eAop
(ii) The category Spca1(S) has universality of colimits.

(iii) The Al-localization functor La: commutes with finite products.

Proof. The proof of (i) is just as in [MV99, §2.3]. For claim (ii), it suffices to show that the
Al-localization functor L1 is locally cartesian, i.e. the canonical morphism

LAl(EF/ X 9) — F x LA1(9)
F F
is invertible for any morphism of A'-homotopy invariant spaces 3’ — J and any morphism

G — F. This follows immediately from (i). Claim (iii) follows from the fact that the colimit in
(i) is sifted (as sifted colimits commute with finite products). O

Remark 2.3.5. From [Hoyl7, Prop. 3.3] one deduces a version of the above proposition where
the colimit in (i) is indexed on the sifted category of compositions of morphisms of the form
A'! x X — X. This version is in fact sufficient for our purposes.

2.4. Motivic spaces.
2.4.1. We say that a space F over S is motivic if it is Nisnevich-local and A'-homotopy invariant.

2.4.2. We denote by H(S) the full subcategory of Spc(S) spanned by motivic spaces over S.
This is an accessible localization of Spe(S): the inclusion admits a left adjoint
Lot : Spe(S) — H(S)
which can be described as the transfinite composite

(2.8) Lunot () = lim (L1 © Lis) " (9).

n>=0

This follows from the fact that the properties of Nisnevich-locality and A'-homotopy invariance
are stable by filtered colimits.

In particular, #(S) is an arena.

2.4.3. We will say that a morphism F — JF of spaces over S is a motivic equivalence if the
induced morphism
Lmot (EF/) — Lmot (?)
is invertible, or equivalently if for each motivic space G, the induced morphism of spaces
Maps(§, F) — Maps(S, F)
is invertible.

We will say that a space F over S is motivically contractible if the canonical morphism
F — eg is a motivic equivalence, i.e. the motivic localization Lyt (F) is a fibred space.
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2.4.4. Let C be an arena. We say that a functor H: Sm/g — C satisfies Nisnevich excision if it
sends any Nisnevich square, over a smooth S-scheme X, to a cocartesian square in C. (One can
also define the property of Nisnevich descent for H, in a similar way.)

We say that H satisfies A'-homotopy invariance if for each smooth S-scheme X, the canonical
morphism
H(X x A') = H(X)

is invertible in C.

Let Functmot(Sm/s, C) denote the full subcategory of Funct(Sm g, C) spanned by functors
that satisfy Nisnevich excision (or equivalently, Nisnevich descent) and A!-homotopy invariance.
We have the following universal property for the category H(S):

Theorem 2.4.5. Let C be an arena. For any scheme S, the canonical functor

(2.9) Funct)(H(S), C) = Functmes(Smyg, C),

given by restriction along the functor Sm,s — H(S), is an equivalence of categories.

Proof. Let Functimot(Spe(S), C) denote the full subcategory of Funct(Spe(S), C) spanned

by functors that send motivic equivalences to isomorphisms in C. Under the equivalence (see
[Chap. 0, Proposition 2.3.7])

Funct (Spe(S), C) = Funct(Smys, C),
it is clear that the full subcategory Functimot(Spc(S), C) identifies with Functyet(Sm/s, C).
Hence by [Chap. 0, Proposition 2.6.17] we have canonical equivalences
Functi(H(S), C) = Functymot(Spc(S), C) = Functmor(Smys, C)

as claimed. O

2.4.6. We have:
Lemma 2.4.7. The localization functor Lot commutes with finite products.

Proof. This follows from the formula (2.8): the functors Lyjs and L1 both commute with finite
products, and filtered colimits commute with finite products in the topos Spc(S). g

By adjunction it follows that for a motivic space &, the internal hom space Homg(G, F) is
motivic for any space G. In particular:
Corollary 2.4.8. The category H(S) is cartesian closed.

In particular we get a cartesian monoidal structure on the arena H(S), which is the restriction
of the symmetric monoidal structure on Spe(S).

2.4.9. Since the topos Speyis(S) has universality of colimits, as does Spei(S) by [Chap. 1,
Proposition 2.3.4], we have:

Proposition 2.4.10. The category H(S) has universality of colimits.

2.4.11. For each smooth S-scheme X, let Mg(X) denote the motivic localization Lyt (hs(X)).
[Chap. 1, Proposition 2.2.9] implies directly:

Proposition 2.4.12. The category H(S) is generated under sifted colimits by the spaces Ms(X),
where X is a smooth S-scheme which is affine (over Spec(Z)).
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2.4.13. Suppose the scheme S is classical, and noetherian of finite Krull dimension (in the
classical sense). In this case there is an ordinary category of motivic spaces constructed by
Morel-Voevodsky [MV99], which can be viewed as the underlying ordinary category of an
(00, 1)-category (see [Robl14] or [Hoyl5, Appendix C]).

We have:

Proposition 2.4.14. If S is a classical noetherian scheme of finite Krull dimension, then the
(00, 1)-category H(S) coincides with the Morel-Voevodsky (oo, 1)-category of motivic spaces over

S.

Proof. This follows directly from the observation that the site Sm/g is equivalent to the site
of classical smooth S-schemes. Indeed, any smooth S-scheme X is flat over S, hence itself
classical. 0

3. POINTED MOTIVIC SPACES

3.1. Pointed fibred spaces.

3.1.1. A pointed (fibred) space over a scheme S is a pointed object in the category Spc(S), i.e. a
Spc

pair (F,z), with J a fibred space over S, and x : 5" — J a morphism from the terminal object.
By definition it admits a zero object pt‘SSpc’ = (egpc,id), where id : e'SSpC — e‘gpc is the
identity morphism.
We will write Spe(S), for the arena of pointed spaces over S. By [Lurl6, Ex. 4.8.1.20, Prop.

4.8.2.11], it has a canonical structure of Spc,-module arena, and is canonically equivalent to the
base change Spe(S) @spe SPC,.-

3.1.2. Consider the forgetful functor sending a pointed space (&, z) to its underlying space F.
This admits a left adjoint, which freely adjoins a point to &F; that is, it is given on objects by
the assignment

Fs Fo= (FUeSP, z)
where z is the canonical point.

For a smooth S-scheme X, we write h3(X) := hg(X) for the pointed space represented by
X.

3.1.3. Tt is clear that Spc(S). is equivalent to the category of modules over the monad with
underlying endofunctor ¥ — F U egp “. Since the latter commutes with contractible colimits,
it follows that the forgetful functor (F,z) + F is conservative®, and preserves and reflects
contractible colimits.

This monadic description also implies that every pointed space can be written as a colimit
of a simplicial diagram with each term in the essential image of F +— F,:

Lemma 3.1.4. The category Spc(S)e is generated under sifted colimits by objects of the form
F4, where F is a space over S.

6Recall that a functor is conservative if it reflects isomorphisms.
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3.1.5. The cartesian monoidal structure on the arena Spc(S) induces a monoidal structure on
Spe(S)e (see [Roblb, Cor. 2.32]):

Lemma 3.1.6. The arena Spc(S)e admits a canonical symmetric monoidal structure, which is
uniquely characterized by the fact that the functor Spc(S) — Spc(S)e is symmetric monoidal.
Further, we have the following universal property:

Given any symmetric monoidal morphism of arenas u : Spe(S) — C, with C pointed, there
exists a unique symmetric monoidal morphism of arenas @ : Spc(S)e — C, and an isomorphism
'ZL [} (7)_;'_ ~U.

We will write ®gp s for the monoidal product, and Homgp “e for the internal hom. The
monoidal unit is 1‘51)6’ = (e57)4 = hg(S).

3.1.7. Given a pointed space T over S, the T-suspension endofunctor X5 := X g : Spe(S)e —
Spc(S), is defined by the assignment
(F,z)— (F,z) ®s T.
Dually, the T-loop space endofunctor )y := €y g is given by
(%) Hom (T, (¥, )).

These endofunctors form an adjunction (Xq, Q).
3.2. Pointed motivic spaces.

3.2.1. A pointed space (F,z) over S is Nisnevich-local, A'-homotopy invariant, or motivic, if
the underlying space JF has the respective property. We write H(S), for the full subcategory
of Spc(S)e spanned by motivic pointed spaces. Note that this is equivalent to the category of
pointed objects in H(S).

We write M§(X) := Mg(X)+ for the pointed motivic space represented by a smooth S-scheme
X.

3.2.2. The monadic description we have given of the category Spe(S)e also applies to H(S)s, so
that in particular we have:

Lemma 3.2.3. The forgetful functor (F,x) — F, on the category of pointed motivic spaces over
S, is conservative and preserves and reflects contractible colimits.

3.2.4. The symmetric monoidal structure on the arena Spc(S)e restricts to one on H(S),
uniquely characterized by the fact that the morphism H(S) — H(S). is symmetric monoidal.
As in [Chap. 1, Lemma 3.1.6] we have the following universal property:

Proposition 3.2.5. Given any symmetric monoidal morphism of arenas u : H(S) — C, with
C pointed, there exists a unique symmetric monoidal morphism @ : H(S)e — C, and an
isomorphism o (—)4 = u.

3.2.6. Note that the full subcategory H(S). is a reflective localization of Spe(S)e at the small
set of morphisms of the form

(3.1) h$(X x A') — h(X)

for each smooth S-scheme X, and

(3:2) lim h3(C(Xa /X)) - h3(X)
neAop

for each smooth S-scheme X and Nisnevich covering family (fq : Xo = X)q.
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In particular we obtain localization functors Lyjs := Lifsc"s, La: = Li’;fé, and
(3.3) Lunot = LoEes : Spe(S)e — H(S)a.

These admit descriptions which are completely analogous to their unpointed versions.

According to the universal property in [Chap. 1, Lemma 3.1.6], these localization functors
are symmetric monoidal morphisms of arenas, characterized by commutativity with the functor
F +— F4. In particular, we have

Lot (h§ (X)) = M3(X)

for each smooth S-scheme X.

3.2.7. As a result of [Chap. 1, Proposition 2.4.12] and [Chap. 1, Lemma 3.1.4], we have:

Proposition 3.2.8. The category H(S)e is generated under sifted colimits by objects of the
form Mg(X), for X a smooth S-scheme which is affine (over Spec(Z)).

4. MOTIVIC SPECTRA

4.1. Fibred spectra.

4.1.1. Let S be a scheme. Fix a pointed space T over S 7. A (fibred) T-spectrum over S is a
J-spectrum object in the category Spe(S)s of pointed spaces over Smys.

That is, a T-spectrum is the data of a sequence (F,),>¢ of fibred pointed spaces over S and
structural isomorphisms

T = Qr(Fpgr)

for each integer n > 0, together with a homotopy coherent system of compatibilities between
these isomorphisms.

4.1.2. We will write Spt4(S) for the arena of T-spectra over S, which is by definition the limit
of the cofiltered diagram

(4.1) 2T Spe(S)e 225 Spe(S)e
in the category of (oo, 1)-categories and right adjoint functors.
Equivalently, this is the colimit of the filtered diagram
(4.2) Spc(S)e 1, Spc(S)e 27,

in the category of arenas.

4.1.3. By construction, the adjunction (X, Q) at the level of pointed spaces gives rise to an
equivalence

%S Spta(S) = Spt4(S) : Q57

where Egp " is given by the assignment (Fr)n = (Fnt1)n (with the same structural isomorphisms),
and Qgpt is given by (Fp)n — (Q5(Frt1))n (with the induced structural isomorphisms).

When there is no risk of ambiguity, we will write Xq := Egp " and Qg = Qgp L

"For us T will be st Pé or S! @ G.
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4.1.4. Also by construction, we have for each n > 0 a canonical functor
Q%" Spt4(S) = Spe(S)e
which is the projection to the nth term, with canonical isomorphisms Q«IQ%O_"_l =QF "
Dually we have a canonical functor
N7 Spe(S)e — Sptg(S),
left adjoint to Q3 ~", with canonical isomorphisms 2;0—"—1200 =X

We will write Q5° := Q?_O and X = E%O_O. Note that there are canonical isomorphisms
LFT" =Q1¥F and QF 7" = QFXL for each n.

4.1.5. Note that for T = S!, the category of S'-spectra over S is equivalent to the category of
presheves of spectra on the site Sm/g; we will identify the two implicitly. (Here S! denotes the
constant pointed space over S valued in the 1-sphere (with its canonical base point).)

4.1.6. For a smooth S-scheme X, we will write hy'g(X) := X5 (h§(X)) for the infinite suspension
spectrum of the pointed motivic space represented by X. This is the T-spectrum representing X,
in the sense that for any T-spectrum [E there are canonical functorial isomorphisms of pointed
spaces

(43) MapSSptg_(S) (hgfis (}()7 ]E) ~ ]_—‘(>(7 Q%—’is (]E))

4.1.7. By [Lur09b, Lem. 6.3.3.6], and the definition of Spt4(S) as the cofiltered limit of the
diagram (4.1), we have:

Lemma 4.1.8. The category Spt(S) is generated under filtered colimits by objects of the form
7T, for T a pointed space over S and n > 0.

4.1.9. Assume that for some n > 2, the pointed space T is n-symmetric, i.e. the cyclic
permutation of T®” is homotopic to the identity morphism. In this case, the main result of
[Rob15] endows the arena Spt4(S) with a canonical symmetric monoidal structure:

Lemma 4.1.10. The arena Spt(S) admits a canonical symmetric monoidal structure, and the
functor X lifts to a symmetric monoidal morphism of arenas, which sends T to a monoidally
invertible object of Spt4(S).

Further, it satisfies the following universal property: given a symmetric monoidal arena D,
and a symmetric monoidal morphism u : Spc(S)e — D sending T to a monoidally invertible
object in D, there exists a unique symmetric monoidal morphism @ : Spt+(S) — D and an
isomorphism i o XF = u.

We will write ®g := ®§pt7 for the monoidal product in Spt+(S), and Homg := Hom‘sptT
for the internal hom. The monoidal unit 1g := l‘gpt7 is the T-spectrum hyg(S).

4.1.11. We will abuse notation and write T also for the monoidally invertible object £5° (7). Let
TR0 = 1§pt7 and let 72(=1) be a monoidal inverse to T; for n > 1, write T®(—") = (FO(=1))@n,

The universal property in [Chap. 1, Lemma 4.1.10] shows that there are canonical isomor-
phisms of functors (237)°" = T @ (=) and (Q37")°" = T @ () for each n > 0.

4.2. Motivic spectra.
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4.2.1. We say that a T-spectrum I over S satisfies Nisnevich descent or A'-homotopy invariance
if for each n > 0, its nth component Q3" (IE) satisfies the respective property (as a pointed
fibred space).

A motivic T-spectrum is a T-spectrum satisfying Nisnevich descent and A'-homotopy
invariance.

4.2.2. Let SHy(S) denote the category of motivic T-spectra. This is equivalent to the category
of Lot (T)-spectra objects in the category of pointed motivic spaces over S. In particular it is
an arena.

4.2.3. For a smooth S-scheme X, we will write Mg (X) := M5 g(X) for the motivic T-spectrum
B (M§(X)), and similarly M35"(X) := £ 7*(M§(X)) for k > 0.

By [Chap. 1, Proposition 2.4.12] and [Chap. 1, Lemma 4.1.8], we have:

Proposition 4.2.4. The category SHy(S) is generated under sifted colimits by objects of the
form 23" (MF5(X)), for X a smooth S-scheme which is affine (over Spec(Z)) and n > 0.

4.2.5. Assuming that T is n-symmetric for some n > 2, the symmetric monoidal structure on
the arena Spt4(S) ([Chap. 1, Lemma 4.1.10]) restricts to one on SH(S).

4.2.6. Note that [E satisfies Nisnevich descent (resp. A'-homotopy invariance) if and only if it is
a local object with respect to the small set of morphisms

(4.4) lim Q5 h3(C(Xa/X)n) - O h(X)
neA°P

for every smooth S-scheme X and integer k > 0 (resp. the small set of morphisms

(4.5) Q5 hFg(X x A') = Q5 hPg(X)

for every smooth S-scheme X, Nisnevich covering family (f, : Xo — X)q, and integer k > 0).
In other words, the full subcategory SHq(S) is an accessible localization of the arena

Spty(S), so that the inclusion admits a left adjoint

(4.6) Lot := L3PI7 : Spto(S) — SH(S).

mot,S

Similarly we have Nisnevich- and A!-localization functors denoted L;P by

Spt .
s and L A’i 7, respectively.

4.2.7. These localization functors admit descriptions completely analogous to their counterparts
at the level of motivic spaces. For example,

(4.7) Lai(E) = lim Hom$™7 (hi’s(A%), )
[n]eAcp
for every T-spectrum E.

Using the universal property ([Chap. 1, Lemma 4.1.10]), they define symmetric monoidal
morphisms of arenas which can be characterized uniquely by commutativity with the functor
Y% . In particular, we have

Linot (0575 ¥ (X)) = MF5*(X)

for each k£ > 0.
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4.2.8. As soon as the category Spt4(S) is stable®, we have a canonical isomorphism
(48) Lmot (]E) - LAl (LNIS(]E))
for any T-spectrum IE.

This follows from the fact that the condition of Nisnevich descent is defined by finite limits,
and finite limits commute with colimits in stable (oo, 1)-categories.

8This will be true in all the cases we consider, e.g. T= S, T=8! ® (Ms(Ay ™), 1) = (Ms(P}), 00).
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5. INVERSE AND DIRECT IMAGE FUNCTORIALITY

5.1. For motivic spaces.

5.1.1. Let f: T — S be a morphism of schemes. The direct image functor
(5.1) fSP¢: Spe(T) — Spe(S)

is defined as restriction along the base change functor Sm;s — Sm/r.

Its left adjoint f3,,., the inverse image functor, is given by left Kan extension (see [Chap. 0,
Proposition 2.3.7]). Hence it is uniquely characterized by commutativity with small colimits
and the formula

(52) Fipe(hs(X)) = br(X X T)

for smooth S-schemes X.

5.1.2. Note that the base change functor Sm,g — Sm/r preserves Nisnevich covering families
and Al-projections. It follows that the inverse image functor f Spe preserves Nisnevich-local
equivalences and A'-homotopy equivalences.

By adjunction, its right adjoint f27¢ preserves Nisnevich-local and Al-homotopy invariant
spaces and induces a functor f* : H(T) — H(S). This admits a left adjoint f* given by the
formula

5.1.3. Both the direct and inverse image functors are symmetric monoidal:

Lemma 5.1.4. The functor ffpc (resp. f}) admits a canonical symmetric monoidal structure.

Proof. Since the respective symmetric monoidal structures are cartesian, it suffices to show that
f+ commutes with finite products. In fact, it commutes with arbitrary small limits since it is a
right adjoint. 0

Lemma 5.1.5. The functor fg,, (resp. f3,) admits a canonical symmetric monoidal structure.

Proof. By adjunction from [Chap. 1, Lemma 5.1.4], we obtain a canonical structure of colax
symmetric monoidal functor on f*. That is, there are canonical morphisms

(5:3) FFEx9) = 13 x ()

for any two spaces F and G over S. It suffices to show that these morphisms are invertible.

Since f§,, commutes with small colimits, and the cartesian product commutes with small
colimits in each argument, one reduces to the case of representables, in which case the claim is
clear. For f;,, the claim follows from the first because motivic localization commutes with finite
products ([Chap. 1, Proposition 2.4.7]). O

5.2. For pointed motivic spaces.
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5.2.1. Let f: T — S be a morphism of schemes. Since ffpc preserves the terminal object, it
induces a functor ffpc' : Spe(T) — Spe(S) given on objects by the formula

ST (Gy) = (FEP9(9), £57° ()

Tts left adjoint fng. : Spe(T) — Spe(S) is uniquely characterized, according to [Chap. 1,
Lemma 3.1.4], by the fact that it commutes with sifted colimits and with the functor F — F,:

(54) fg'pc. (?+) = f(;pc(gj)Jr
for any space F over S.
Explicitly, it is given on objects by the formula
Jspe (Fy2) = (f5pe(F), f5pe(2)
for each pointed space (F, z) over S.

Lemma 5.2.2. The inverse image functor fg,. admits a canonical symmetric monoidal
L]
structure.

Proof. This follows directly from the universal property [Chap. 1, Lemma 3.1.6] and the formula
(5.4). O

5.2.3. The direct image functor ff P preserves the properties of Nisnevich descent and Al-
homotopy invariance, and induces a functor f7t. Its left adjoint J#. is given by composing fg,.
with the motivic localization functor:

(5.5) it = Lunot [ e,

5.3. For motivic spectra. In this paragraph we fix, for each scheme S, a pointed space Tg
over S, together with isomorphisms fg,. (Ts) — T for any morphism f : T — S, and a
homotopy coherent system of compatibilities between these isomorphisms.

Such a datum defines an object of the limit @S Spc(S)e over all schemes S. Of course, this
limit is equivalent to the category Spc(Spec(Z))., so that choosing such a datum is equivalent to
choosing a pointed space over Spec(Z) and defining Tg to be its inverse image over each scheme

S.

For simplicity, we will drop T from the subscripts in the notation Spt(S), SH(S), X, O,
etc., when there is no risk of confusion.

5.3.1. Let f : T — S be a morphism of schemes. Since fgpc. is monoidal ([Chap. 1, Lemma 5.2.2]),
it commutes with JT-suspensions.

We let f spt denote the unique morphism of arenas making the diagram

Spe(S)e —Z Spe(S)e —Z - —— Spt(S)
|Fes 28 e
Spe(T)e —Z Spe(T)e —Z -+ —— Spt(T)
commute. That is, it is the unique morphism of arenas which commutes with »&°.

Using the universal property stated in [Chap. 1, Lemma 4.1.10], we get:

Lemma 5.3.2. The functor fg,, admits a canonical symmetric monoidal structure.
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5.3.3. Alternatively, we can use [Chap. 1, Lemma 4.1.8] to describe [§p: as the unique functor
which commutes with filtered colimits and with the functor £3"33 for each n > 0:

(5.6) fspt (35" 55 (F)) = X5 "85 (f55:(F))

for each pointed space F over S.

5.3.4. Let fSp " be the right adjoint of J§pt- This can be described as the unique limit-preserving
functor which makes the diagram

Spt(T) —— --- S, Spc(T), LN Spe(T)e
s [o o
Spt(S) —— - -- SALEAN Spe(S)e g, Spe(S)e
commute, i.e. which commutes with Q°°:
(5.7) Qo fPt = fre
and is given on objects by the assignment

E = (F)n = fo(E) = (27 (F0))n-

5.3.5. The direct image functor ff P! preserves motivic spectra and induces a functor fS*.

We let f3y, be its left adjoint, the symmetric monoidal functor Linot f§,,. This is the unique
symmetric monoidal morphism of arenas which commutes with 33 : H(S)e — SH(S).

6. SMOOTH MORPHISMS

6.1. The functor p;.

6.1.1. Let p: X — S be a smooth morphism. In this case the base change functor admits a right
adjoint, the forgetful functor Sm/x — Smys:

Y5 X) = (Y =X 509).

It follows that the functor pj,,. coincides with restriction along the forgetful functor, and
admits a left adjoint

pi?e : Spe(T) — Spe(S)

which is defined by left Kan extensmn (see [Chap. 0, Proposition 2.3.7]), and hence is uniquely
characterized by commutativity with small colimits and the formula

(6.1) ;" (hx(Y)) = hs(Y).

for smooth X-schemes Y.

6.1.2. Since the forgetful functor Sm/x — 8mys preserves Nisnevich covering families and

Al-projections, it follows that pjj ¢ preserves Nisnevich-local equivalences and A'-homotopy
equivalences.

In particular its right adjoint py,,. preserves Nisnevich descent and A'-homotopy invariance,
and induces a morphism pj, on motivic spaces.

Its left adjoint pg'[ is given by applying pfp  and then the localization functor Liye:

pQ{ (F) = Lot (pfpc (3)).
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6.1.3. Let p: X < S be a smooth morphism. By [Chap. 1, Lemma 5.1.5], the functors p,,. and
p3; admit canonical symmetric monoidal structures, so that their respective left adjoints pfp ¢
and pg" admit colax symmetric monoidal structures.

If p is an open immersion, then these monoidal structures are strict:

Proposition 6.1.4. Let j : U — X be a quasi-compact open immersion. Then the canonical
colax symmetric monoidal structure on the functor jfpc (resp. ]g") is strict.

Proof. Tt suffices to show that the canonical morphisms
.Spc .Spc -Spc
ST 9) > ) % JE)

are invertible for all spaces ¥ and G on U. Since jf P€ commutes with small colimits, and the
cartesian product commutes with small colimits in each argument, one reduces to the case of
representables.

Then the claim follows from the fact that the fibred products X xyY and X xgY are
canonically identified (since j is a monomorphism, i.e. its diagonal morphism is invertible).
As above, the claim for j;”l follows the fact that motivic localization commutes with finite
products. O

6.1.5. Let (fo : So — S)a be a Nisnevich covering family. Given a morphism of motivic spaces
over S, the following proposition says that it is invertible if and only if its inverse image on each
S. is invertible:

Proposition 6.1.6 (Nisnevich separation). Let S be a scheme. For any Nisnevich covering
family (pa : Sa — S)a, the family of inverse image functors (pa)3 : H(S) — H(Sa) is
conservative.

This is in fact true at the level of Nisnevich-local spaces, which is what we will prove.

Proof. Let ¢ : 1 — F5 be a morphism of Nisnevich-local spaces on S, and suppose that the
following condition holds:

(%) For each «, the morphism (pq)is(F1) = (Pa)Fis(Fa) is invertible.
The claim is that under this assumption, the morphism
(X, J) = I'(X,F9)

is invertible for every smooth S-scheme X.

Since F; satisfy Nisnevich descent, it suffices to show that the morphism
(6.2) I'Xq,F1) = (X4, Fa)
is invertible for each a, where X,, is the base change of X along p,.

Since hg(Xa) = (Pa)i(pa)* (hs(X)), we have by adjunction

I'(Xa,Ji) = T(X, (pa)s(Pa)*Fi)

for each o and 4.

Hence the claim follows from the assumption (). O

6.2. Smooth base change formulas.
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6.2.1. Suppose we have a cartesian square

Iy

P
T8

of schemes.
At the level of (motivic) spaces, pointed spaces, and spectra, there are canonical 2-morphisms
(6.3) ®):(f) = fps,
(6.4) fep™ = @) (f)es
constructed in [Chap. 2, Paragraph 2.2].

The following says that Spc and H satisfy the left base change property along smooth
morphisms (see loc. cit.):

Proposition 6.2.2. Ifp and p’ are smooth, then the 2-morphisms (6.3) and (6.4) are invertible
at the level of spaces and motivic spaces.
Proof. Tt suffices to consider the first 2-morphism; the second is its right transpose.

For fibred spaces, we note that the functors in question commute with small colimits, so
that we may reduce to representable spaces, in which case the claim is obvious.

Similarly, for motivic spaces we use [Chap. 1, Proposition 2.4.12] to reduce to the case of
motivic localizations of representable spaces. O
6.2.3. Next we consider the case of pointed spaces. Then we have:

Proposition 6.2.4. Ifp and p’ are smooth, then the 2-morphisms (6.3) and (6.4) are invertible

at the level of pointed spaces and pointed motivic spaces.

Proof. By transposition it suffices to show that the canonical morphism (p');(f")* — f*py is
invertible. Since the functors in question commute with colimits and with the functor F — F |
the claim follows from [Chap. 1, Lemma 3.1.4] (resp. [Chap. 1, Proposition 3.2.8]) and smooth
base change for unpointed spaces ([Chap. 1, Proposition 6.2.2]). O

6.2.5. Fix a family of pointed fibred spaces (Ts)s as in [Chap. 1, Paragraph 5.3].
We have:
Proposition 6.2.6. Ifp and p' are smooth, then the 2-morphisms (6.3) and (6.4) are invertible

at the level of T-spectra and motivic T-spectra.

Proof. This follows from [Chap. 1, Lemma 4.1.8] (resp. [Chap. 1, Proposition 4.2.4]) and
smooth base change for pointed spaces ([Chap. 1, Proposition 6.2.4]). O

6.3. Smooth projection formulas. Let p : X — S be a smooth morphism. Note that the
symmetric monoidal functor ps,,. endows Spe(X) with a structure of Spe(S)-module category.

The following verifies the left projection formula along smooth morphisms, in the sense of
[Chap. 2, Paragraph 2.2]:

Proposition 6.3.1. The functorpfpc (resp. pg{) lifts to a morphism of Spc(S)-module categories
(resp. H(S)-module categories). In other words, there are canonical isomorphisms

(65) P9 3" () > 1y(9) X
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and dually
(6.6) Homyg(py(5), F) — psHomy (G, p*(F))

for any fibred spaces (resp. motivic spaces) F over S and G over X.

We recall how to use the monoidal structure on p* to construct the morphism (6.5):

The counit of the adjunction (pfp ‘, pfgpc) induces a canonical morphism
9 x1"(F) > pe(9) X7 (F) 5 p*(15(9) X T)

which corresponds by adjunction to the morphism desired.

Proof. Tt suffices to show that the canonical morphism (6.5) is invertible. For fibred spaces, we
may reduce to the case where the spaces F and G are representable, since the functions involved
commute with small colimits. In this case the claim is clear. The case of motivic spaces is
similar, using [Chap. 1, Proposition 2.4.12] to reduce to the case of motivic localizations of
representable spaces. O

6.3.2. The following slightly more general formula, proved in exactly the same way, will also be
useful:

Lemma 6.3.3. Let p: X — S be a smooth morphism. Let G be a fibred space (resp. motivic
space) over X, and F — F' a morphism of fibred spaces (resp. motivic spaces) over S. Then
there is a canonical isomorphism

(6.7) pS 0D 95T

of fibred spaces (resp. motivic spaces) over S.

6.3.4. Similarly we get smooth projection formulas for pointed spaces and spectra. As above,
the following statements are equivalent to formulas of the form (6.5) and (6.6).

Proposition 6.3.5. The functor pfpc’ (resp. py'*) lifts to a morphism of Spc(S)s-module

categories (resp. H(S)e-module categories).

Proof. This follows from [Chap. 1, Lemma 3.1.4] (resp. [Chap. 1, Proposition 3.2.8]) and the
smooth projection formula for unpointed spaces ([Chap. 1, Proposition 6.3.1}). O

Fix a family of pointed fibred spaces (Ts)s as in [Chap. 1, Paragraph 5.3]. Then we have:
Proposition 6.3.6. The functor pfpt (resp. pf”) lifts to a morphism of Spt(S)-module
categories (resp. SH(S)-module categories).

Proof. This follows from [Chap. 1, Lemma 4.1.8] (resp. [Chap. 1, Proposition 4.2.4]) and the
smooth projection formula for pointed spaces ([Chap. 1, Proposition 6.3.5]). O

7. CLOSED IMMERSIONS

7.1. A topological digression, I: local cocontinuity. In order to prove [Chap. 1, Propo-
sition 7.3.2], the main result of this section, we will begin by making a small topological
digression.

Recall that a functor u between sites is topologically cocontinuous® if the restriction of
presheaves functor u* preserves local equivalences. In this paragraph we introduce a slightly

9The term cocontinuous is used in [SGA 4].



7. CLOSED IMMERSIONS 65

weaker version of this condition, where the functor u is only “locally cocontinuous” with respect
to a weaker topology. We will show that for such functors, the restriction functor u* preserves
local equivalences between sheaves for the weaker topology.

7.1.1. Let C be a small (oo, 1)-category. As in [Chap. 0, Sect. 2], we will write P(C) for the
(00, 1)-category of presheaves on C, and h : C — P(C) for the Yoneda embedding. Given a
topology 7 on C, we will write Sh,(C) for the subcategory of T-sheaves, i.e. the presheaves F
for which the canonical morphism

F(c) = Maps(R, F)

is invertible for all 7-covering sieves R < h(c) of all objects ¢ € C. We will write inc, :
Sh:(C) — P(C) for the inclusion, and L, : P(C) — Sh,(C) for the left-exact left adjoint (the
7-localization functor).

Given a functor u : C — D, we will write u* : P(D) — P(C) for the restriction of presheaves
functor, and wu (resp. u.) for the left adjoint (resp. right adjoint).

7.1.2. Let (C,7) and (D, 7’) be sites. Recall that a functor v : C — D is topologically
cocontinuous if the following condition is satisfied:

(COQC) For every 7'-covering sieve R’ < h(u(c)), the sieve R — h(c), generated by
morphisms ¢ — ¢ such that h(u(c’)) — h(u(c)) factors through R/, is T-covering.

Note that R can be described as the sieve

7.1 R = u*(R/ X h(c) <= h(c
) ®) | x e <o

obtained from R’ < h(u(c)) by applying v* and taking the base change along the unit morphism
h(c) = u*ui(h(c)) = u*h(u(c)).

7.1.3. Let 7} be a topology on D which is weaker than 7/. For simplicity we will assume that 7
is subcanonical, so that representable presheaves are 7)-sheaves. Let L, denote the associated
7{-sheaf functor, left adjoint to the inclusion.

We will say that u is 7{-locally topologically cocontinuous if it satisfies the following weaker
version of the condition (COC):

(COC’) For every 7'-covering sieve R’ — h(u(c)), the sieve R < h(c), generated by
morphisms ¢ — ¢ such that h(u(c¢’)) — h(u(c)) factors through the 7)-sheaf associated to R/, is
T-covering.

Note that R can be described as the sieve

(7.2) Ri=u*(Ly(R))  x  h(c) = h(c)
u*(h(u(c)))

obtained in the same way as (7.1) starting from L, (R') < h(u(c)).
7.1.4. The following lemma is proved in exactly the same way as the analoguous result for
topologically cocontinuous functors [SGA 4, Exp. III, Prop. 2.2]:

Lemma 7.1.5. Let u: (C,7) — (D, 7’) be a functor. Let 7} be a topology on D which is weaker
than 7'. If w is t-locally cocontinuous, then the functor

uj : Shyy (D) < P(D) S P(C)

sends 7'-local equivalences to T-local equivalences.
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Proof. First of all, note that uf; admits a left adjoint

L,
u : P(C) = P(D) — Shy (D)

by construction. Let R’ < h(d) be a 7'-covering sieve of an object d of D. To show that
9 ud(R') — ui(h(d)) is a 7-local equivalence, it suffices by universality of colimits to show
that, for every object ¢ of C and every morphism ¢ : h(c) = uih(d), the base change

ugR’ % h(c) < h(c)
ugh(d)

is a 7-covering sieve. Note that ¢ factors canonically through the unit morphism h(c) —
ufulh(c) = ugh(u(c)) and the canonical morphism uiulh(c) = uih(u(c)) — uih(d) (obtained
by adjunction from ¢). The base change of ¥ by uih(u(c)) — uih(d) is identified, since ug
commutes with limits, with the canonical morphism

w*(R" x h(u(c))) = uyh(u(c)).
h(d)

Since R’ xp,(qy h(u(c)) < h(u(c)) is 7'-covering, as the base change of a 7’-covering sieve, the
conclusion follows by applying the condition (COC’). O

7.2. A topological digression, II: contractible colimits. In this paragraph we consider a
topology whose associated category of sheaves coincides with the free completion by contractible
colimits. This topology, which we denote cdm, is the one associated to the minimal cd-structure!®,
with no commutative squares. We show that for any cdm-locally topologically cocontinuous

functor u, the restriction functor u* on sheaves commutes with contractible colimits.

7.2.1. Given an (00, 1)-category C admitting an initial object @¢, the cdm topology is defined by
the sieve @ — h(@c), where & is the initial presheaf. A presheaf F: C°P — Spc is a cdm-sheaf
if and only if the space F(D¢) is contractible. Let Sheam(C) denote the (oo, 1)-category of
cdm-sheaves. It is not difficult to show that Sheam (C) is the (0o, 1)-category freely generated
by C under contractible colimits.

Let Legm denote the cdm-localization functor, left adjoint to the inclusion. For a presheaf
F on C, Leam (F) can be described as the unique cdm-sheaf for which the space Leam (F)(c) is
identified with F(c¢) whenever ¢ is not initial.

7.2.2. For convenience we state an easy-to-use sufficient condition for cdm-local cocontinuity.

Lemma 7.2.3. Let (C,7) and (D, 7") be co-sites and u : C — D a functor. Assume that D
admits an initial object @p, and that the topology T’ is stronger than cdm. Then for the functor
u to be cdm-locally cocontinuous, the following condition is sufficient:

(COC’cqm ) For every 1'-covering sieve R’ — h(u(c)), the sieve R < h(c), generated by
morphisms ¢ — ¢ such that either h(u(c)) — h(u(c)) factors through R' — h(u(c)) or u(c’) is
initial, s T-covering.

Indeed let ¢ — ¢ be a morphism such that u(¢’) is initial. Then the (unique) morphism
h(u(c')) = Leam (@) — h(u(c)) factors as the composite of the (unique) morphism Legm (&) —
Leam (R’) and Leam (R') — h(u(c)).

10S¢e [Voel0] for the notion of cd-structure.
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7.2.4. The following lemma is a formal consequence of [Chap. 1, Lemma 7.1.5], and the fact
that cdm-sheaves are stable by contractible colimits:

Lemma 7.2.5. Suppose that u is cdm-locally cocontinuous. Then the functor
in

Shy/(D) 5 P(D) 5 P(C) L2 Sh.(C)

commutes with contractible colimits.

Proof. Since the topology 7' is a refinement of the cdm topology, the inclusion inc,s factors as

s cd
inccdm incedm

inc,s : Sh (D) <~ Sheam(D) — P(D).
Similarly the left adjoint L,/ factors as
cdm C(/im
L, : P(D) £ Sh., (D)~ Shy(D),
and L™ is left adjoint to mCCdm.

Given a diagram (F;);e1 of 7/-sheaves indexed by a contractible (0o, 1)-category I, consider
the counit morphism

cdm( ) SN lnCCSlm Lcdm lglnCCdm (3: )’

lglnc
which is clearly a 7/-local equivalence. By applying u’;,, = v* inccam this induces a morphism

Updm lglnc (F;) — Uy, incSd™ LCdm lgmchm(St ),

which is identified with a canonical morphism

lglu inc./ (F;) — u* 1n(:71$13"

since the inclusion inccgn, commutes with contractible colimits. By [Chap. 1, Lemma 7.1.5], this
is a 7-local equivalence, so the claim follows. O

7.3. The exceptional inverse image functor i'.

7.3.1. Let i : Z — S be a closed immersion. Note that if the base change functor Sm g — Sm/y
were topologically cocontinuous (see [Chap. 1, Paragraph 7.1]), then the direct image functor .
on Nisnevich sheaves would commute with arbitrary small colimits. Though this is not quite
true, we will show that this is true cdm-locally (see [Chap. 1, Paragraph 7.2]), which will imply
that 7, commutes with contractible colimits:

Proposition 7.3.2. Leti:Z < S be a closed immersion. Then the direct image functor it

commutes with contractible colimits.

Proof. By [Chap. 1, Lemma 7.2.5] it suffices to show that the base change functor Sm,g — Sm/z
is cdm-locally cocontinuous. For this it suffices to check the condition (COC’.4y,) of [Chap. 1,
Lemma 7.2.3], which amounts to the following:

(%) For any smooth S-scheme X and any Nisnevich covering sieve R’ of Xz, the sieve R of X
generated by morphisms X’ — X such that either (i) the empty sieve on X7, is Nisnevich-covering,
or (ii) X7, — Xgz factors through R/, is Nisnevich-covering.

This condition follows directly from [Chap. 0, Proposition 5.6.2], which says that étale
morphisms can be lifted (Zariski-locally) along i. O
In particular:

Corollary 7.3.3. The direct image functor ilt* (resp. i$™) commutes with small colimits.
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By the adjoint functor theorem (see [Chap. 0, Paragraph 2.6.11]) we have a right adjoint
z'IH. (resp. iESH), called the exceptional inverse image functor.

7.4. The localization theorem. In this paragraph, we will work in the category of motivic
spaces, and will omit the decoration H from the notation for simplicity.
7.4.1. Let i : Z — S be a closed immersion with quasi-compact open complement j : U < S.
In this situation, we can construct a canonical commutative square
i (F) ——— F
(7.3) | J
Jyley) —— 3" (F).
of motivic spaces over S; see [Chap. 2, Paragraph 3.3].
We call this the localization square associated to the pair (i, 7).
7.4.2. The main theorem is this chapter is the following, due to [MV99] over classical bases
(noetherian and of finite dimension).

Theorem 7.4.3. Leti:7Z — S be a closed immersion with quasi-compact open complement
j: U< S. Then for every motivic space F over S, the localization square (3.2) is cocartesian.

The proof will occupy [Chap. 1, Sect. 9].

7.4.4. We can deduce from [Chap. 1, Theorem 7.4.3] a pointed version:

Corollary 7.4.5 (Localization). Let i:7Z < S be a closed immersion, with quasi-compact open
complement j : U < S. For any pointed motivic space (F,s) over S, there is a canonical cofibre
sequence

(7.4) J1i%(F,s) = (F,s) = 3" (F, 5).
and dually, a canonical fibre sequence
(7.5) i (F,8) = (F,8) = jui* (T, 9)

of motivic spaces over S.

Proof. We want to show that the commutative square of pointed motivic spaces

]ﬂ]*(f}j’x) B (?,‘T)

| |

pt‘SSpc' — ,3(F, x)

is cocartesian.

Since the forgetful functor (F, x) — F reflects contractible colimits ([Chap. 1, Lemma 3.2.3]),
it suffices to show that the induced square of underlying motivic spaces

J47"F Uy (es) €8 — CI
o (— A

is cocartesian.
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Consider the composite square

383" F —— (" F) Ujyje(esyes —— F

l | |

jﬁj*(es) €s i*i*g‘“.

which is cocartesian by [Chap. 1, Theorem 7.4.3].

Since the left-hand square is evidently cocartesian, it follows that the right-hand square is
also cocartesian. O

7.4.6. Similarly we also deduce localization for motivic spectra:

Corollary 7.4.7. Leti:Z — S be a closed immersion, with quasi-compact open complement
j: U= 8. For any motivic T-spectrum [E over S, there is a canonical cofibre sequence

(7.6) J2i*(E) = E — i,i"(E),
and dually a fibre sequence
(7.7) ivi'(E) = E — j,j*(E),

of motivic T-spectra over S.

Proof. Tt suffices to show the first sequence is a cofibre sequence. Since the functors in question
commute with small colimits, [Chap. 1, Proposition 4.2.4] allows us to the reduce to the case of
pointed motivic spaces, which is [Chap. 1, Corollary 7.4.5]. O

7.4.8. An immediate corollary of [Chap. 1, Theorem 7.4.3] is:

Corollary 7.4.9. Leti:7Z — S be a closed immersion with quasi-compact open complement.
Then the direct image functor ilt (resp. ilte, iS™) is fully faithful.

Proof. The claims for i7t* and i$™ follow directly from that of ‘.

Considering the localization square for i, (F), we see that the canonical morphism 7,4, — i
is invertible. Hence it suffices to show that i, is conservative.

For this, let ¢ : F1 — F5 be a morphism of motivic spaces over Z such that i. () is invertible.
To show that ¢ is invertible, it suffices to show that

I'X,F) = I'(X, F2)
is invertible for each smooth Z-scheme X.

By [Chap. 0, Proposition 5.6.2], we may assume that X is the base change of a smooth
S-scheme Y. In this case the claim follows by assumption, since I'(X, ;) = I'(Y, i.(F;)) for each
i, by adjunction. O

7.5. Closed base change formula.

7.5.1. Let © be a cartesian square

X, k4 X

(7.8) £ | Jf

Z —— S,

of schemes, with ¢ and k closed immersions with quasi-compact open complements.
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At the level of motivic spaces, there is a canonical 2-morphism
(7.9) keg® — i
constructed in [Chap. 2, Paragraph 2.3].

The following says that H satisfies the right base change property along closed immersions
(see loc. cit.):

Corollary 7.5.2. The 2-morphism (7.9) is invertible at the level of motivic spaces.

Proof. This follows by considering the localization squares associated to the closed immersions j
and k, respectively, and using the smooth base change formula ([Chap. 1, Proposition 6.2.2]). O

7.5.3. In the pointed setting, the functor i, admits a right adjoint 7' ([Chap. 1, Corollary 7.3.3]),
so we obtain another 2-morphism by right transposition from (7.9). Hence we have:

Corollary 7.5.4. Given a cartesian square of the form (7.8), the canonical 2-morphisms
(7.10) keg® — [T
(7.11) i'fo — gk

are invertible at the level of pointed motivic spaces.

7.5.5. Fixing a family of pointed fibred spaces (Tg)s as in [Chap. 1, Paragraph 5.3], we have:
Corollary 7.5.6. Given a cartesian square of the form (7.8), the canonical 2-morphisms
(7.12) kg™ — [Tl

(7.13) i fo = gk

are invertible at the level of motivic spectra.

7.6. Closed projection formula. Let i : Z — S be a closed immersion. Note that the
symmetric monoidal functor i3, endows H(Z) with a structure of H(S)-module category.

The following verifies the right projection formula along closed immersions, in the sense of
[Chap. 2, Paragraph 2.3]:

Proposition 7.6.1. The functor i’t lifts to a morphism of H(S)-module categories. In other
words, there are canonical isomorphisms

(7.14) i4(S >Z< 7 (F)) = i.(9) >S< F
for any motivic spaces F over S and G over Z, and dually
(7.15) i'Homg (G, F) — Hom, (i*G,i'F)
for any motivic spaces F and G over S.

Proof. The second isomorphism is the right transpose of the first. The first follows from the
localization theorem ([Chap. 1, Corollary 7.4.5]) and the smooth projection formula. O

7.6.2. Similarly we get closed projection formulas for pointed motivic spaces and spectra.
As above, the following statements are equivalent to formulas of the form (7.14) and (7.15).
The proofs are completely analogous to those of [Chap. 1, Proposition 6.3.5] and [Chap. 1,
Proposition 6.3.6).

Corollary 7.6.3. The functor i’ lifts to a morphism of H(S)s-module categories.

Fix a family of pointed fibred spaces (Ts)s as in [Chap. 1, Paragraph 5.3]. Then we have:
Corollary 7.6.4. The functor iS™ lifts to a morphism of SH(S)-module categories.
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7.7. Smooth-closed base change formula.

7.7.1. Let © be a cartesian square of schemes
Xz —Fs X
(7.16) lq lp
Z—"> S,
where ¢ and j are closed immersions with quasi-compact open complements, and p and ¢ are
smooth.
There are canonical 2-morphisms
(7.17) Piks — aqy
(7.18) i > kg
at the level of pointed motivic spaces, constructed in [Chap. 2, Paragraph 2.4].

The following verifies the bidirectional base change property with respect to smooth mor-
phisms and closed immersions:

Corollary 7.7.2 (Smooth-closed base change). Given a cartesian square of the form (7.16),
the 2-morphisms (7.17) and (7.18) are invertible at the level of pointed motivic spaces.

Proof. The second transformation is obtained by passing to right adjoints from the first. For
the first, it suffices by [Chap. 1, Corollary 7.4.9] it suffices to show that the transformation

pﬁk*k* — i*quk*,

obtained by pre-composition with k*, is invertible. This follows directly from [Chap. 1,
Corollary 7.4.5] and smooth base change. O
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8. THOM SPACES
8.1. Thom spaces.

8.1.1. Let E be a vector bundle over a scheme S. Denote by p : E — S the projection and by
s : S — E the zero section.

We denote by thomg /g the Thom suspension endofunctor on the category of pointed motivic
spaces, defined by the assignment

F + thomgg(F) := p?‘sf'(?).

E/S

Its right adjoint thom™ ", the Thom desuspension endofunctor, is given by

F— thomE/S(ff) = S!H,p%.(?)-

The Thom space of E is the pointed motivic space
Ths(E) := thom™5(1%).
8.1.2. We recall some results about Thom spaces that follow immediately from the various base

change and projection formulas available to us. See [Chap. 2, Paragraph 3.4], where we will
provide axiomatic proofs of these statements.

Lemma 8.1.3. For each pointed motivic space F over S, there are canonical isomorphisms
(81) thOHlE/S (S’r) =J ®s Ths(E),
(8.2) thom®™ 3 (F) = Homg(Thg(E), F).
Lemma 8.1.4. For every vector bundle E over S, there are canonical isomorphisms

f* o thomg g = thomg /T © f*,

fv o thom® s /T 2 thom®/S o f,.
In particular, for each pointed motivic space F over S, there are canonical isomorphisms

f*(Ths(E)) = Thr(E x T).
S

Lemma 8.1.5. Let p: X — S be a smooth morphism. For each vector bundle E over S, there
are canonical isomorphisms
(8.3) py o thom (g . x)/x = thomg/g o py,
(8.4) thom® *s X/X o p* = p* o thom™/.

Lemma 8.1.6. Leti:7Z — S be a closed immersion. For any vector bundle E over S, there are
canonical isomorphisms

(8.5) i o thomg » 7)/z = thomg g 0 iy,
(8.6) i' o thom™S = thom®*s#)/% o .
Lemma 8.1.7. Let E' — E — E” be an ezact sequence of vector bundles over S. Then there is
a canonical 2-isomorphism
thomg /g = thompg /g o thomgy /5.
In particular, there is a canonical isomorphism of pointed motivic spaces
(8.7) Ths(E) = Ths(E”) ®s Thg(E').
8.2. The Thom space of A!. The localization theorem allows us to give a more explicit

description of the Thom space, which we will allow us to compute Thg (A%) as the motivic space
represented by Pg.
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8.2.1.

Lemma 8.2.2. For any vector bundle E on S, there is a canonical isomorphism of pointed
motivic spacesu
Cofib(Mg(E*) — Mg(E)) = Thg(E),

where E* denotes the open subscheme complementary to the zero section.

Proof. Let j : EX — E denote the open immersion. Applying the cocontinuous functor p; to
the localization cofibre sequence associated to the closed immersion s, and evaluating the result
on the motivic space 1g, we get the cofibre sequence

Mg(E*) — Mg(E) — Ths(E)

of pointed motivic spaces over S. On underlying motivic spaces, this induces a cocartesian
square

Ms(E*) ———— Ms(E)

| |

Ms(EX) Ueg —— Ms(E) U eg
65— Ths(E)

as claimed. O

8.2.3. Let Sg: denote the S'-suspension functor.

Corollary 8.2.4. There are canonical isomorphisms

(8.8) (Ms(P§), 00) <= Eg1 (Ms(Ag ™)) = Ths(Ag)

of pointed motivic spaces over S.

Proof. The right-hand isomorphism follows from [Chap. 1, Lemma 8.2.2] when we set E = Aé,

since Ms(A{) is contractible. The left-hand isomorphism follows from Zariski descent by
considering the standard open cover of PL. g

We will often abuse notation and write simply P{ for the pointed motivic space (Ms(P}), 0o)
when there is no risk of confusion.

8.3. Motivic P'-spectra.

8.3.1. A motivic spectrum over a scheme S is a motivic Pé—spectrumw, where we write P& =
(Ms(P4), 00) by abuse of notation.

We will write SH(S) := SHpy(S) for the category of motivic P{-spectra.

8.3.2.
Lemma 8.3.3. The arena SH(S) is stable.

Proof. Tt is clear that SH(S) is pointed. By [Chap. 1, Corollary 8.2.4], the 1-sphere S! is
invertible in SH(S), which is a necessary and sufficient condition for stability. O

L The cofibre is taken in the unpointed category, and we consider it with its canonical base point.
12This is the “correct” category of motivic spectra, where we will have the full formalism of the six operations.
This is why we drop the subscript Pé from the notation.
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8.3.4. The following fact ensures that [Chap. 1, Lemma 4.1.10] applies, so that we get a canonical
symmetric monoidal structure on SH(S).

Lemma 8.3.5. The pointed motivic space Pé 18 3-symmetric.

Proof. 1t suffices by functoriality to assume that S = Spec(Z). In this case the claim is
well-known (see e.g. [Voe98, Lem. 4.4]). O

8.3.6.
Lemma 8.3.7. For each integer n > 0, there are canonical isomorphisms
thOHlAgr/S = Z;é,&

AZ/S _ on
thom™s/> = PLS"

Proof. The second isomorphism is the right transpose of the first. For the first, note that by
[Chap. 1, Lemma 8.1.7] and [Chap. 1, Corollary 8.2.4], both functors are given by the assignment

F s Fo (P
0

8.3.8. The adjunction (thompg /S,thomE/ S) gives rise to an adjunction at the level of motivic
spectra, which we denote in the same way.

We have (see [Chap. 2, Lemma 3.4.12]):
Lemma 8.3.9. For every vector bundle E over S, the adjunction
(8.9) thomg /g : SH(S) = SH(S) : thom®/S
is an equivalence.
8.3.10. Suppose the scheme S is classical, and noetherian of finite Krull dimension (in the
classical sense). In this case there is an ordinary triangulated category of motivic spectra

constructed by Morel-Voevodsky, which can be viewed as the underlying ordinary category of a
stable (0o, 1)-category (see [Rob14] or [Hoy15, Appendix C]).

We have:

Proposition 8.3.11. If S is a classical noetherian scheme of finite Krull dimension, then the
(00, 1)-category SH(S) coincides with the Morel-Voevodsky (0o, 1)-category of motivic spectra
over S.

Proof. This follows directly from [Chap. 1, Proposition 2.4.14], by comparison with the con-
struction of [Hoy15]. O

9. THE LOCALIZATION THEOREM

This section is dedicated to the proof of the localization theorem (see [Chap. 1, Para-
graph 7.4]).

Throughout the section, we let ¢ : Z < S be a closed immersion of schemes, such that the
complementary open immersion j : U < S is quasi-compact.

9.1. The space hg(X, ).



9. THE LOCALIZATION THEOREM 75
9.1.1. Given a smooth S-scheme X, let Xy := X xg U denote its base change along j, and
Xz := X xgZ its base change along i.
We will write h%(X) for the space over S defined by the cocartesian square

hg(Xy) —— hg(X)

(9.1) l l

hg(U) —— hi(X).

Note that there is a canonical isomorphism
-k Z
(92) i5pe(h§ (X)) = hz(Xz)
of spaces over Z, since i5pe commutes with colimits.

Since colimits in Spe(S) are computed section-wise, we can describe the spaces of sections
of h%(X) explicitly:

Lemma 9.1.2. Let Y be a smooth S-scheme. If Yy is the empty scheme, then the space
I‘(Y7hg (X)) is contractible. Otherwise, there is a canonical isomorphism of spaces

(9.3) D(Y,h%(X)) = I'(Y,hs(X)) = Mapsg(Y, X).

9.1.3. Let p: X — S be a smooth morphism. Let ¢ : Z < X be an S-morphism, i.e. a partially
defined section of p.

Consider the canonical morphism

(9.4) £ BE(X) - iP5, (X)) = 157 (hy(Xz)
induced by the counit of the adjunction (i5,,., iSPe)

The morphism ¢ corresponds by adjunction to a morphism 7 : hg(S) — i€7(hg(Xz)). We
define a space hg(X, t) over S as the fibre of £ at the point 7, so that we have a cartesian square

hs(X,t) ——— h(X)

| I

hg(S) —— 7% (hg(Xy))

of spaces over S.

9.1.4. Over S-schemes that do not vanish on Z, sections of hg(X, ) are S-sections of X extending
t. More precisely (recall that limits in Spe(S) are computed section-wise):

Lemma 9.1.5. Let Y be a smooth S-scheme. If Yy is the empty scheme, then the space
T(Y, hg(X,t)) is contractible. Otherwise, I'(Y,hs(X,t)) is canonically identified with the fibre of
the restriction map

Mapsg (Y, X) — Maps,(Yz, Xz)

at the point defined by the composite Yz — Z N Xyz.

In other words, points of the space I'(Y,hg(X,t)) are pairs (f,«), with f: Y — X an
S-morphism and a a commutative triangle

YZ L) Xz.

|7
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9.1.6. If p is a smooth morphism, then since p3,. commutes with both limits and colimits, we
have:

Lemma 9.1.7. Let X be a smooth S-scheme and t : Z — X an S-morphism. If p: T — S is a
smooth morphism, then there is a canonical isomorphism of fibred spaces

Pspe(hs(X, 1)) = hr (X, t1),
where tr : Zt — X7 is obtained from t by base change along p.

9.1.8. Our main result about the fibred space hg(X, ) is as follows:

Proposition 9.1.9. Let X be an affine smooth S-scheme. Then for every S-morphismt : Z — X,
the space hs(X,t) is motivically contractible.

The proof will occupy the rest of this section.

9.1.10. We first consider the case of vector bundles:

Lemma 9.1.11. Let E be a vector bundle over S with zero section s : S < E. Then the space
hs(E, sz) is motivically contractible, where sy : Z < Eyz denotes the base change of s along
i:72 <= 8.
Proof. Tt suffices to construct an A'-homotopy inverse to the unique morphism

v : hg(E, sz) — hg(S).
The zero section induces a canonical morphism

hs(S) % hs(E) — hg(E),

which induces a canonical morphism

¥ : hg(S) — hg(E, s7).

It remains to define an A'-homotopy
9 hs(Aé) >S<hs(E,Sz) — hs(E,Sz)

between the identity and the composite ¢ o p. For each smooth S-scheme Y with Yz # &, define
D(Y,9) : (Y, hs (AL)) x D(Y, hs(E, 52)) = D(Y, s (E, 57))
by the assignment
(a:Y =AY f:Y—=E)—~(a-f:Y = E).
It is clear that this defines the A'-homotopy desired. O

9.2. Etale base change.

9.2.1. The assignment (X,t) — hg(X,?) is functorial in the following sense.

Let (X,t) and (X', t') be pairs, with X (resp. X’) a smooth S-scheme, and ¢ : Z < X (resp.
t' . Z — X') a partially defined section. Suppose f : X" — X is an S-morphism such that the
square

’
7 <t X/,
7t Xy
is cartesian. Then there is a canonical morphism of spaces over S

(9.5) hs(X/, ') — hs(X, £).
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Lemma 9.2.2. Suppose that (X,t) and (X', t') are pairs as above. Let p: X' — X be an étale
morphism, such that the above square is cartesian. Then the induced morphism
©: hs(X’ﬂfl) — hg (X, t)

is a Nisnevich-local equivalence.

The claim is that the induced morphism of Nisnevich sheaves Lyis(¢) is invertible. By [Chap.
0, Lemma 2.8.8], it suffices to show that it is O-truncated (i.e. its diagonal is a monomorphism)
and O-connected (i.e. it is an effective epimorphism and so is its diagonal).

9.2.3. Proof of [Chap. 1, Lemma 9.2.2], step 1. To show that Lyis(p) is O-truncated, it suffices
to show that ¢ is O-truncated (since Lyjs is exact). For this, it suffices to show that for each
smooth S-scheme Y, the induced morphism of spaces of Y-sections

T(Y, ) : T(Y,h§(X',#')) = T(Y,h§ (X, 1))
is O-truncated.

We may assume Yy is not empty; then this is the morphism induced on fibres in the diagram

(Y, h4 (X', 1)) —— Mapsg(Y,X’) —— Mapsy(Yz, X})

(Y, h§(X, t)) —— Mapsg(Y,X) —— Maps, (Y7, Xz)
Note that the two right-hand vertical morphisms are O-truncated: p is itself O-truncated since
it is étale, and since the Yoneda embedding commutes with limits, the induced morphism

hg(X’) — hg(X) is also O-truncated. It follows that the left-hand vertical morphism is also
0-truncated for each Y, and therefore so is ¢.

9.2.4. Proof of [Chap. 1, Lemma 9.2.2], step 2. To show that Lyis(¢) is an effective epimorphism,
it suffices to show that for each smooth S-scheme Y (with Yz not empty), any Y-section of
hg (X, t) can be lifted Nisnevich-locally along ¢.

Let f be a Y-section of h%(X, ), i.e. a morphism f:Y — X together with an isomorphism
between f7 and the composite Yy — Z N Xyz. Let ¢ : Y — Y denote the base change of
p: X' — X along f:

Y 15y
ol
X 2 X
Then note that
¢ '(Yu) — Y’

-

is a Nisnevich square. Indeed, the closed immersion Yz < Y is complementary to Yy < Y,
and it is clear that ¢~*(Yz) — Yz is invertible because in the diagram

q_1 Yz) R YZ

£
[

X, —2— Xz

-

!
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the lower square and the composite square are cartesian, and hence so is the upper square.

Hence it suffices to show that the restriction of f to either component of this Nisnevich
cover lifts to h%(X’,¢'). The restriction f|Y’ lifts to a section of h%(X’, ) given by g : Y’ — X'
The restriction f|Yy admits a lift trivially: since (Yy) xsZ = @, the spaces hZ (X, t)(Yy) and
h%(X’,¢')(Yy) are both contractible.

9.2.5. Proof of [Chap. 1, Lemma 9.2.2], step 3. It remains to show that the diagonal A, (,)
of Lyis(¢) is an effective epimorphism, or equivalently that Lis(Ay) is.

For each smooth S-scheme Y, the diagonal induces a morphism of spaces

D(Y,hg(X', ) = D(Y,h§(X,¢))  x  T(Y,h§(X',¢)).
I(Y,hZ(X,1))
It suffices to show that for each Y (with Yz not empty), any Y-section of the target lifts
Nisnevich-locally to a Y-section of the source. Choose a section of the target, given by two
Y-sections f:Y — X' and g: Y — X', and an identification «: po f — pog.

Let Yo < Y denote the open immersion defined as the equalizer of the pair (f,g). Note that
the closed immersion Yy < Y factors through Y. Hence the open immersions Yo <— Y and
Yy — Y form a Zariski cover of Y. It is clear that the Y-section (f, g, «) lifts after restriction
to Y by definition, and after restriction to Yy since Yy XgZ = &, so the claim follows.

9.3. Reduction to the case of vector bundles. We reduce to the case of vector bundles in
two steps: first, we show that partial sections of smooth S-schemes can be lifted Nisnevich-locally
to globally defined sections; second, we show using étale base change that smooth S-schemes
with globally defined sections can be replaced by their conormal bundles.

9.3.1. The following lemma will allow us to reduce to the situation where the Z-section ¢ lifts to
an S-section s : S — X.

Lemma 9.3.2. Let p: X — S be a smooth morphism. Given an S-morphism t : Z — X, there
exists a Nisnevich square

Yy —— Y

(9.6) l l"
S

Uc%

such that q factors through p.

Proof. We will construct a commutative square

7 —----3 > Y
(9.7) j |
XZ — X

with the following properties:
(i) The induced square of underlying classical schemes
ch A Ycl
(Xz)er — Xa
is cartesian.

(ii) The composite morphism Y — X — S is étale.
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Given such a square (9.7), it is clear that we get a Nisnevich square (9.6) as claimed, by taking
q to be the composite Y — X — S: indeed, the closed immersion Z. < S is complementary to
j, and the squares

7o —— Yqg —— Y

I

Zeg —> Sep —— S
are cartesian (the left-hand one by (i), the right-hand one by (ii)).

In the classical case, the existence of the square (9.7) is known (this is a non-equivariant
version of [Hoyl7, Thm. 2.21]).

Hence one obtains a cartesian square

of classical schemes. Then one defines Y by the cocartesian square of closed immersions

ch —> YO

[

7 —— Y.

By [GR16, IT1.1, Cor. 1.3.5] this is well-defined, and the morphism Yy < Y is a closed immersion
identifying Yo with the classical scheme underlying Y. The existence of the desired commutative

square
Z

XZC—>

—

M <

follows by construction. O

9.3.3. Next, we show that an S-section s : S < X may be approximated by the zero section of
its conormal bundle. This is a refinement of [AG15, Prop. 2.1.10].

Lemma 9.3.4. Let p: X — S be a smooth morphism, and assume that p is further affine. If p
admits a section s : S — X, then there exists an S-morphism q : X — N7% to the conormal bundle
of s satisfying the following conditions:
(i) The commutative diagram
S—-+X
|
S 1 N*
is cartesian, where t denotes the zero section.

(i) The morphism s factors through an open immersion jo : Xo < X with q o jo étale.

Proof. Recall that the conormal bundle N7 is by definition the vector bundle associated to the
shifted cotangent sheaf N* = T*(S/X)[—1].

Consider the closed immersion s : S¢; < X of underlying classical schemes. Let J denote
its defining quasi-coherent sheaf of ideals, and Ny, = i*(N,) its conormal bundle, where 7 is the
closed immersion S.; < S.
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The epimorphism (pc;)«(J) — N* admits a section, since N7, is projective, so that one

Scl
obtains a morphism N} — (pe1)«(Ox,,). This lifts to a morphism N} — p.(Ox), corresponding
to a morphism of Og-algebras
¢ Symeg (N5) = p«(Ox).

Then it is clear that the commutative square of Og-algebras
N —% 5 0g
o
p*(OX) -7 OS

is cocartesian.
We let ¢ : X — N7 be the morphism of S-schemes corresponding to ¢.

For (ii), let jo be the étale locus of ¢q. To show that s factors through jo, it is sufficient to
note that s*(T*(X/N%)) = 0. O

9.4. Motivic contractibility of hg(X,¢).

9.4.1. Let X be an affine smooth S-scheme, with structural morphism p : X — S. Recall the
statement of [Chap. 1, Proposition 9.1.9]: we want to show that for any S-morphism ¢ : Z — X,
the fibred space hg(X, t) is motivically contractible.

9.4.2. By [Chap. 1, Lemma 9.3.2] there exists a Nisnevich square

Yy ——Y

o Dl

U—238

where ¢ factors through p : X — S. It suffices then by the Nisnevich separation property ([Chap.
1, Proposition 6.1.6]) to show that j* hg(X,t) and ¢* hg(X,t) = hy(Y xg X, t') are contractible,
where ¢’ : Yz — (Y x5 X)z is the base change of ¢.

9.4.3. The case of j*hg(X,t) is clear, since j is complementary to i : Z < S.
9.4.4. For ¢* hg(X, 1), note that by construction there exists a section t” : Y — Y xg X which

lifts ¢’ (since ¢ factors through X):

(Y xgX)z —— Y xgX

A
t’I '
J

Yy e Y

Hence by [Chap. 1, Lemma 9.3.4], [Chap. 1, Lemma 9.2.2] and [Chap. 1, Lemma 9.1.11], we
have motivic equivalences

hS(Y >S< X, t/) == hS(NZ(//, Z) == hS(S),

where Nj,, is the conormal bundle, and z is the base change of its zero section.
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9.5. Proof of the localization theorem. We conclude this section by proving the localization
theorem, using [Chap. 1, Proposition 9.1.9].

Recall that our goal is to show that the canonical morphism

(9.9) F U Ms(U) = i,id"(F)
Jg3* (F)

is invertible for each motivic space F over S.

9.5.1. First, note that we may reduce to the case where JF is a motivic localization Mg(X) of
an affine smooth S-scheme X. Indeed, we have seen that the category H(S) is generated under
sifted colimits by such objects ([Chap. 1, Proposition 2.4.12]) and that each of the functors jg,
j*, i*, and i, commutes with contractible colimits ([Chap. 1, Proposition 7.3.2]).

In this case the morphism (9.9) is canonically identified with the morphism
9.10 Mg (X U Ms(U) — 2. Mg(X
(9.10) s(X) o) s(U) s(Xz)

S

where we write Xy = X xg U and Xz = X xgZ.

9.5.2. Note that the source of the morphism (9.10) is the motivic localization of the space h3(X),
and that the target i7(Mz(Xz)) is the motivic localization of i27(hz(Xz)).

Hence it suffices to show that the morphism
(9.11) h%(X) — i8P°hy(Xz)
is a motivic equivalence.

9.5.3. By universality of colimits ([Chap. 1, Proposition 2.4.10]), it suffices to show that for every
.Spc

smooth S-scheme Y and every morphism hg(Y) — i3

t:Z — X, the base change

(9.12) h%(X)  x  hg(Y) — hg(Y)
i7" hz (Xz)

hy(Xz), corresponding to an S-morphism

is invertible.

9.54. Let p: Y — S be the structural morphism of Y. Then since hg(Y) = pfpc hy (Y), one
sees that (9.12) is identified, by the smooth projection formula ([Chap. 1, Lemma 6.3.3]), with
a morphism

(9-13) P (P HE(X) x hy(Y)) = 7 hy (Y).

P5,05 " hz(Xz)

9.5.5. Note that we have p*i, = k.q¢* ([Chap. 1, Proposition 6.2.2]), where k (resp. ¢) is the
base change of ¢ (resp. p) along p (resp. 7). Hence the morphism (9.13) is identified with the
image by py of

(9.14) hyZ(X x Y) X hy (Y) — hy(Y).
5 kS hy, (X xsY)z)

9.5.6. The source of the morphism (9.14) is nothing else than the space hy (X xgY,ty), where
ty : ZxsY — X xgY is the base change of ¢ along p. Hence we conclude by [Chap. 1,
Proposition 9.1.9].
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84 2. THE FORMALISM OF SIX OPERATIONS
1. INTRODUCTION
One of the main goals of this document is to construct the formalism of six operations for

the stable motivic homotopy category, in the setting of derived algebraic geometry.

In this chapter, we develop an axiomatic approach to the construction of this formalism.
1.1. The six operations.

1.1.1. The principle of Grothendieck’s yoga of six operations is that cohomology theories in
algebraic geometry (e.g. ¢-adic cohomology or de Rham cohomology), generally come with
some category of coefficients (e.g. ¢-adic sheaves or D-modules). These categories of coefficients
come with the six operations (f*, f., fi, f',®, Hom), which categorify the standard properties of
cohomology theories like Kiinneth formulas, Poincaré duality and Gysin maps.

1.1.2. A category of coefficients satisfying the formalism of six operations consists roughly of
the following data:

(1) For each (derived) scheme S, a closed symmetric monoidal (oo, 1)-category D(S).
(2-a) For each morphism f : S’ — S, a functor of inverse image
§*:D(S) - D(S)
which is symmetric monoidal.
(2-b) For each morphism f: S’ — S, a functor of direct image
f.:D(S) = D(S),
right adjoint to f*.

(3-a) For any morphism f : S — S which is separated of finite type, a functor of exceptional
direct image (or direct image with compact support)

fi: D(S) = D(S).
(3-b) For any morphism f : S" — S which is separated of finite type, a functor of exceptional
inverse image
f':D(S) = D(s"),
right adjoint to fi.
(4) For any separated morphism of finite type f, a functorial 2-morphism
ag: fi = fu
which is invertible when f is proper.
(5) For any cartesian square of schemes

A

ol
T—1.s

with g and ¢’ separated of finite type, isomorphisms (base change formulas)
frar = (an(f)"
(/)9 = ¢'fu
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(6) For any morphism f : S" — S which is separated of finite type, isomorphisms (projection
formulas)

Fos fi(§) = [(f*(F) ®s 9), (FeD(S),5eD(S))
Homy, (f*(), f'($)) = f'Homg(7, ), (7,6 € D(S))
f.Homg, (F, f1(G)) = Homg (f(%),9). (F€D(5),5€D(9))

1.1.3. All this data should come with a homotopy-coherent system of compatibilities.

For example, there should be connection isomorphisms (g o f)* — f*¢* and (go f)1 = g1 fs
for any two composable morphisms of schemes f and g, with compatibilities between such
isomorphisms.

The base change and projection formulas should also come with compatibilities with these
connection isomorphisms.

1.2. The 2-category of correspondences.

1.2.1. As a starting point, we can coherently encode the individual operations and the adjunctions
(f*, f), (fi, f1), (®,Hom) by the data of a symmetric monoidal functor

D* : (Sch)? — Arena,

and a functor
D, : Sch — Arena

which take the same values on objects.
Here Arena denotes the (oo, 1)-category of arenas (see [Chap. 0, Paragraph 2.6]).

We write D(S) := D*(S) = Di(S) for the (o0, 1)-category associated to each scheme S.
Since D* is symmetric monoidal and preserves commutative monoid objects, there is an induced
structure of commutative monoid in Arena on D(S) (since every scheme S has a canonical
structure of cocommutative comonoid via the diagonal morphism). Recall that commutative
monoids in Arena are by definition symmetric monoidal arenas, i.e. arenas with a symmetric
monoidal structure such that the bifunctor — ® — admits a right adjoint Hom(—, —). Hence we
have encoded the operations (®, Hom).

For a morphism of schemes f, we write f* := D*(f) for the induced morphism of arenas,
and f, for its right adjoint. We have a functor

D, : Sch — (00, 1)-Cat

obtained from D* by passing to right adjoints (see [Chap. 0, Paragraph 3.2]). Hence we have
coherently encoded the operations (f*, f.).

!

Similarly, the operations (fi, f*) are encoded by D, and the functor
D' : (Sch)®® — (00, 1)-Cat

obtained by passage to right adjoints.

1.2.2. In order to coherently encode base change formulas, we will follow the approach of D.
Gaitsgory and N. Rozenblyum [GR16], using the (oo, 2)-category of correspondences.

In [GR16, Book V.1] the authors define a 2-category Corr(Sch)P °P1 which can be described

sep;all?
informally as follows. Its objects are schemes. The 1-morphisms S’ — S are correspondences, i.e.
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diagrams

T,y
(L.1) lg

S

where g is separated of finite type. The 2-morphisms from a correspondence (T, ', ¢’) to a
correspondence (T, f, g) are diagrams

where h : T/ — T is proper.

Composition of 1-morphisms is given by forming fibred products, and composition of
2-morphisms is defined in the evident way.

1.2.3. The two functors D* and Dy, together with the base change formulas and all the relevant
coherences, can be encoded by the datum of a symmetric monoidal functor

Dy : Corr(Sch)b, P — (Arena)*°P
on the 2-category of correspondences.

Given a scheme S, Df sends it to a symmetric monoidal arena D(S). In particular, the
closed symmetric monoidal structure encodes the operations (®, Hom).

Given a correspondence of the form (1.1), D} sends it to the composite

g f* :D(S") = D(S).

Hence by restricting D} to the full sub-1-category of correspondences of the form (1.1)
where the vertical morphisms are identity, we recover the functor D* encoding the operations

(f* f+)-

By restricting Dy to the full sub-1-category of correspondences where the horizontal mor-
phisms are identity, we recover the functor Dy encoding the operations (fi, f').

1.2.4. Suppose there is a cartesian square of schemes

(1-2> lg’ lg

with g and ¢’ separated of finite type.

The composite of the two correspondences

g —d g T-148

lg and lid

S T
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is the correspondence

Hence applying the functor Dy, we obtain the base change isomorphism
Frar = (g

1.2.5. Let f : T — S be a separated morphism of finite type. Then its diagonal Ap/g : T —
T xg T is a closed immersion (hence a fortiori proper), and therefore defines a morphism
of correspondences (T,idr,idr) — (T xgT,pry,pry) = (T, f,id7) o (T,idr, f) given by the

commutative diagram
T
\AT/ S

TxgT =23 T =——T

[N
T—7 45

/

T
Applying the 2-functor Dy (which is contravariant on 2-morphisms), we obtain a canonical
functorial 2-morphism 7 : f* fi — idr, or by adjunction, a canonical functorial 2-morphism

Ozf:fl —)f*

If f is further proper, then one has a morphism of correspondences (T, f, f) — (S, ids, ids)
given by the commutative diagram

T f
NN
f S——S

|

This gives rise to a canonical functorial 2-morphism € : id — fif*.

One checks that the 2-morphisms (7, &) define an adjunction (f*, fi). In particular, we see
that the 2-morphism ay : fi — f. is invertible when f is proper.

1.2.6. Finally, the functor Corr(Sch)i b — (Arena)®°P needs to be modified in order to
encode the projection formulas. For this we make use of an observation implicit in [LZ12]: the
projection formula

[T er f7(9) = H(F) ®s 9
is expressing nothing else than the D(S)-linearity of the functor fi : D(T) — D(S). In other
words, it expresses the fact that fi is a morphism of D(S)-module categories, where D(T) is
given the structure of D(S)-module via the symmetric monoidal functor f*.

With this in mind, we modify our functor Corr(Sch)% >0 — (Arena)>°P as follows.
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Firstly, we want to change the target from Arena to the 2-category Arenamod of pairs
(0, C) with O a symmetric monoidal arena and C an O-module arena. Morphisms (O, C) —
(O',C') are given by pairs (u,v) with u : O — O’ a symmetric monoidal morphism of arenas
and v : C — C’ a morphism of O-module arenas, where C’ is viewed as a O-module via the
functor w.

Given a morphism f: T — S, we want to view f* as a morphism

(1.3) (D(S), D(S)) — (D(S),D(T))
and f; as a morphism
(1.4) (D(S),D(T)) = (D(S), D(S)).

For this, let Arrsch denote the category of schematic arrows, i.e. morphisms of schemes.
Then we consider the functor

D rsen  (Arrsch)°? — Arenamod,

where Arenamod denotes the underlying 1-category of Arenamod, defined on objects and
morphisms as follows:

It sends an arrow f : T — S to the pair (D(S),D(T)), where D(T) is viewed as an
D(S)-module via the monoidal functor f*: D(S) — D(T).

It sends a morphism of arrows « : f — f, given by a commutative square

Ly

ol
T,

to a morphism of pairs
(D(S),D(T)) = (D(8'), D(T"))
given by the monoidal functor
g* :D(S) — D(Y)
and the D(S)-linear functor
(¢")* : D(T) — D(T").

This functor D¥%,. .., encodes the desired morphism (1.3) as the image of the morphism of

Arrsc
schematic arrows f — idg given by the commutative square
T—155
]
S ——==-.

Similarly we want to encode the morphism (1.4) by a functor D{*""*¢" : Arrsch — Arenamod.

1.2.7. Hence we need to change the source of our functor Dy to the 2-category

Corr(Arrsch)g °Pi

proper

of correspondences of schematic arrows, which can be defined in a similar way as Corr(Sch)g, 2 -

In summary, the full formalism of six operations will be encoded by a symmetric monoidal
2-functor
Corr(Arrsch){0h — (Arenamod)?°P.

1.3. Biadjointable categories of coefficients.
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1.3.1. We will refer to the datum of a symmetric monoidal functor
D* : (Sch)® — Arena
simply as a category of coefficients.
We say that D* is (open, proper)-biadjointable ([Chap. 2, Definition 2.4.4]) if the following

conditions hold:

(1) D* is left-adjointable along open immersions, i.e. for all open immersions j, the functor
J* admits a left adjoint jy which satisfies base change and projection formulas.

(2) D* is right-adjointable along proper morphisms, i.e. for all proper morphisms f, the
functor f, admits a right adjoint f', and f, satisfies base change and projection formulas.

(3) D* satisfies a base change formula expressing commutativity of the operations jy and f,
(j an open immersion, f proper).

1.3.2. Given an (open, proper)-biadjointable category of coefficients, [Chap. 2, Theorem 4.2.2]
says that D* can be extended to a 2-functor

* proper 2-op
Dy : Corr(Arrsch)c 7 — (Arena)
encoding a formalism of six operations.

This functor is constructed by applying the technology of [GR16]. The basic idea, due to P.
Deligne [SGA 4, Exp. XVII], is that the exceptional operations (fi, f') should be defined by
choosing a compactification of f, i.e. a factorization of f as an open immersion j followed by a
proper morphism g, and setting:

fr = g.J1, =79

More precisely, fi should be defined as the colimit of the contravariant functor (j,p) — p.«ji on
the category of compactifications of f.

1.4. Motivic categories of coefficients.

1.4.1. In order to obtain the six functor formalism for the stable motivic homotopy category, we
need to demonstrate (open, proper)-biadjointability.

What we have by construction is a category of coefficients which is left-adjointable with
respect to smooth morphisms. That is, we have functors p; left adjoint to p* for all smooth
morphisms p, satisfying base change and projection formulas.

[Chap. 2, Theorem 3.5.4] identifies a set of sufficient conditions for a category D*, left-
adjointable along smooth, to be (open, proper)-biadjointable. We say that D* is motivic ([Chap.
2, Definition 3.5.2]) if it satisfies these conditions. In particular, we can then apply [Chap. 2,
Theorem 4.2.2] to obtain a full formalism of six operations on D*.

For the stable motivic homotopy category, these conditions have been verified in Chapter 1.

1.5. Organization of this chapter. In Sect. 2 we introduce the notion of biadjointable
category of coefficients.

In Sect. 3 we introduce the property motivic for a category of coefficients, and show that
any motivic category of coefficients is biadjointable. For classical schemes, the analogue of this
result (in the language of triangulated categories) is due to J. Ayoub [Ayo07] (cf. [CD09]). We
assume his result in our proof.

In Sect. 4 we show that any biadjointable category of coefficients extends to a functor on
the category of correspondences, encoding the formalism of six operations. This result is a direct
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application of [GR16]. Our only departure from loc. cit. is the introduction of schematic arrows
in order to encode projection formulas.

In Sect. 5 we return to our main example of interest, the category of motivic spectra. We
construct this as a motivic category of coefficients and deduce the existence of the formalism of
six operations.
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2. CATEGORIES OF COEFFICIENTS

2.1. Categories of coefficients.

2.1.1. Recall that Arena denotes the symmetric monoidal (0o, 1)-category of arenas and colimit-
preserving functors (see [Chap. 0, Paragraph 2.6]), and Arenamon denotes the (0o, 1)-category
of symmetric monoidal arenas, which are by definition commutative monoids in Arena.

For the duration of this section, we fix an (0o, 1)-category C which admits fibred products.
Note that the cartesian monoidal structure on C induces a canonical symmetric monoidal
structure on (C)°P.

Definition 2.1.2. A category of coefficients (defined on C) is a symmetric monoidal functor

D*: (C)°? — Arena.

Given a category of coefficients D*, we will write
D(S) :==D*(S)
for the arena associated to an object S € C. We will write @g (resp. eg) for the initial (resp.
terminal) object of D(S). We will often refer to the objects of D(S) as sheaves on S.

For a morphism f: T — S, we will write
fF=D*(f): D(S) — D(T)

for the induced functor, which we call the functor of inverse image along f. It is cocontinuous,
and admits (by the adjoint functor theorem) a right adjoint

f« : D(T) = D(S)

which we call the functor of direct image along f.

2.1.3. By passing to right adjoints (see [Chap. 0, Paragraph 3.2]), D* gives rise to a unique
functor

D, :C — (00,1)-Cat
such that each functor
D.(f) : D(T) — D(S)

is the right adjoint f,.

2.1.4. Since the functor D* underlying a category of coefficients is symmetric monoidal, it sends
cocommutative comonoids in C to commutative monoids in Arena. Note that every object
S € C has a canonical structure of cocommutative comonoid (with respect to the cartesian
monoidal structure).

Hence for each object S € C, the arena D(S) has a canonical symmetric monoidal structure,
and for each morphism f in C, the inverse image functor f* has a canonical symmetric monoidal
structure (giving by adjunction a lax monoidal structure on its right adjoint f).

We will write ®g for the monoidal product of D(S), 1g for the monoidal unit, and Homg
for the internal hom.
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2.1.5. Dually, suppose we are given a functor (not necessarily symmetric monoidal)
D, : C — Arena.

We will write D(S) := Dy(S) for the arena associated to an object S € C. For each morphism
f:T—Sin C, we write

f! = Dl(f) : D(T) — D(S)
for the induced functor, which commutes with colimits and admits a right adjoint f'.

As above, we can pass to right adjoints to obtain a functor D' : (C)°P — Arena.

2.1.6. For future use, we make the following definition:

Definition 2.1.7. A category of coefficients D* is pointed (resp. S!-stable, compactly gener-
ated) if the functor D* : (C)°P — Arena factors through the full subcategory spanned by pointed
(resp. stable, compactly generated) arenas.

2.2. Left-adjointability.

2.2.1. Let us fix a class left of left-admissible morphisms in C, containing all isomorphisms,
closed under composition and base change, and satisfying the 2-out-of-3 property. Let C!/*
denote the (non-full) subcategory of C spanned by left-admissible morphisms.

When C is the category of schemes, we will typically have left = open, the class of
(quasi-compact) open immersions, or left = smooth, the class of smooth morphisms (of finite
presentation).

Definition 2.2.2. We say that the category of coefficients D* is weakly left-adjointable along
a morphism p: T — S if it satisfies the following property:

(Adj?) The functor p* admits a left adjoint py.

We say that D* is weakly left-adjointable along the class left if it satisfies the following
property:

(Adj'") For every left-admissible morphism p, the property (Adj?) holds.
Note that if D* is weakly left-adjointable along left, then one obtains a canonical functor

D; : Clft - Arena
by passage to left adjoints (see [Chap. 0, Paragraph 3.2].

2.2.3. Recall the notion of adjointability of squares from [Chap. 0, Paragraph 3.3].

Definition 2.2.4. The category of coefficients D* satisfies left base change along a morphism
p: S — S if it is weakly left-adjointable along left, and the following property holds:

(BCP) For all cartesian squares ©

(2.1) J{p' J{P

the induced commutative square ©*
D(S) —— D(T)
22) e
p(s’) L% (.
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1s vertically left-adjointable.

We say that D* satisfies left base change along the class left if it is weakly left-adjointable
along left, and the following property holds:

(BCleﬂ) For every left-admissible morphism p, the property (BCP) holds.

In other words, D* satisfies left base change along a morphism p if for every such cartesian
square O, the exchange 2-morphism

s () = [Py

is invertible.

2.2.5. For any morphism f : T — S, the symmetric monoidal functor f* : D(S) — D(T)
gives D(T) a structure of D(S)-module category. If fy is left adjoint to f*, then by [Chap. 0,
Lemma 2.7.7] it admits a canonical structure of colax morphism of D(S)-modules. In particular
there are canonical morphisms

fi(Fer f7(9) = fi(F)es§  (FeD(T),§€D(S)).

Definition 2.2.6. The category of coefficients D* satisfies the left projection formula along a
morphism p : T — S if it is weakly left-adjointable along p, and the following property holds:

(Proj?) The colax morphism of D(S)-modules py is strict.

We say that D* satisfies the left projection formula along the class left if it is weakly
left-adjointable along left, and the following property holds:

(Proj'") For every left-admissible morphism p, the property (Proj'*) holds.

In other words, D* satisfies the left projection formula along p : T — S if the canonical
morphisms

(2.3) pe(F @1 p*(9) = p:(F)®s§  (FeD(T),§eD(S))

are invertible.

2.2.7.

Definition 2.2.8. A category of coefficients D* is left-adjointable along the class left if it is
weakly left-adjointable along left (Adjleft), satisfies left base change along left (BCleﬁ), and
satisfies the left projection formula along left (Projleﬁ),

2.3. Right-adjointability.

2.3.1. Let us fix a class right of right-admissible morphisms in C, containing all isomorphisms,
and closed under composition and base change. Let C"9"* denote the (non-full) subcategory of
C spanned by right-admissible morphisms.

When C is the category of schemes, we will typically have right = closed, the class of closed
immersions, or right = proper, the class of proper morphisms.
2.3.2. The following definitions are dual to the definitions in [Chap. 2, Paragraph 2.2].

Definition 2.3.3. A category of coefficients D* is weakly right-adjointable along a morphism
q if it satisfies the following property:

(Adj,) The direct image functor q. admits a right adjoint.

We say that D* is weakly right-adjointable along a class right if it satisfies the following
property:
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(Adj,gns) For each right-admissible morphism q, the property (Adj,) holds.

Definition 2.3.4. A category of coefficients D* satisfies right base change along a morphism
q: S — S if the following property holds:

(BCright) For all cartesian squares © in C

T 1oy

el
T

with q and q' right-admissible, the induced commutative square ©*
D(S) —— D(T)

| |y
D(s) Y D).
is vertically right-adjointable.

We say that D* satisfies right base change along the class right if the following property
holds:

(BCright) For every right-admissible morphism q, the property (BCy) holds.

In other words, D* satisfies right base change along a morphism ¢ if for every such cartesian
square ©, the exchange 2-morphism

Fpe = @)(f)
is invertible.

Definition 2.3.5. A category of coefficients D* satisfies the right projection formula along a
morphism q : T — S if the following property holds:

(Proj,) The canonical structure of lax morphism of D(S)-module arenas on g. is strict.

We say that D* satisfies the right projection formula along the class right if the following
property holds:

(Proj,;yns) For every right-admissible morphism q, the property (Proj,) holds.

In other words, D* satisfies the right projection formula along ¢ : T — S if the canonical
morphisms

(2.4) (T @1 q"(9) = ¢.(F)®sG (T eD(T),5e€D(S)).
are invertible.

Definition 2.3.6. A category of coefficients D* is right-adjointable along the class right if it is
weakly right-adjointable along right (Adj,.;..), satisfies right base change along right (BCyignt),
and satisfies the right projection formula along right (Proj,;.u.)-

2.4. Biadjointability.

2.4.1. Let D* be a category of coefficients which is left-adjointable along left.

For every cartesian square © in C

(2.5) lp, lp
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with p and p’ left-admissible, we have by left base change along left (BCleﬁ) a commutative
square

(2.6) Py ®)s

Suppose that D* is also right-adjointable along right and that ¢ and ¢’ are right-admissible.
Then one can ask whether the above square is horizontally right-adjointable, i.e. whether the
square

D(S) «—— D(T)

(2.7) PJ (p’)uT

D !
() (@)«

commutes via the 2-morphism
(2.8) pi(@) = @0 p2(a) s = @ (0)5(d)"(d)s = ¢ (P)s-

Definition 2.4.2. The category of coefficients D* satisfies bidirectional base change along the
pair (left, right) if it satisfies left base change along left, right base change along right, and the
following property holds:

(BCZ];M) For all cartesian squares © in C

Ly
bl
T—55

with p and p" left-admissible (resp. q and q' right-admissible), the square (2.7) commutes.

In other words, we require that for all cartesian squares © as above, the 2-morphism (2.8) is
invertible.

2.4.3. Finally, we define:

Definition 2.4.4. A category of coefficients D* is (left, right)-biadjointable if it left-adjointable
along left, right-adjointable along right, and satisfies bidirectional base change along (left, right)
left
(BCyfie)-
In [Chap. 2, Sect. 4], we will show that on the category of schemes, any (open, proper)-
biadjointable coefficient system can be extended to a full formalism of six operations, where
open and proper denote the classes of open immersions and proper morphisms, respectively.
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3. MOTIVIC CATEGORIES OF COEFFICIENTS

3.1. Premotivic categories of coefficients.

3.1.1. For the duration of this section, Sch will denote a full subcategory of the category of
schemes, which is stable under coproducts and fibred products; the term scheme will refer to
objects of Sch. All categories of coeflicients we consider will be defined on Sch.

Let smooth (resp. open) denote the class of smooth morphisms of finite presentation (resp.
of quasi-compact open immersions).

Definition 3.1.2. A category of coefficients D* is premotivic if it is left-adjointable along
smooth.
3.1.3. The following mild condition on D* will always be satisfied in practice:

Definition 3.1.4. A category of coefficients D* is additive if, for any finite family of schemes
(Sa)a, the canonical functor

is an equivalence.

In particular, we require that the category D(@) is trivial.

3.1.5. Let 7 be a Grothendieck topology on the category Sch.

Definition 3.1.6. A category of coefficients D* is R-separated, for a 7-covering sieve R, if it
satisfies the following property:

(Sepgr) The family of functors f*, with f a morphism in R, is conservative.
We say that D* is T-separated if it satisfies the following property:
(Sep,) For every T-covering sieve R, D* satisfies the property (Sepg).

Remark 3.1.7. Note that the sieve R is the 7-sieve generated by a family of morphisms (f;);,

then D* is R-separated if and only if the family of functors (f); is conservative.

In particular, if the topology 7 is generated by a pre-topology 7y, then D* is 7-separated if

*

and only if for every 7p-covering family (f;);, the family of functors (f;); is conservative.
3.2. Homotopy invariance.

3.2.1. Let D* be a premotivic category of coefficients.

Definition 3.2.2. A category of coefficients D* is called homotopy invariant if it satisfies the
following property:

(Htp) For every scheme S, and every vector bundle p : E — S, the inverse image functor
p* : D(S) — D(E) is fully faithful.

The following observation is a basic property of adjunctions:
Lemma 3.2.3. If D* is premotivic, then the following conditions are equivalent:

(i) D* is homotopy invariant.

(it) For every scheme S, and every vector bundle p : E — S, the counit morphism pyp* — id
1s invertible.
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The next lemma says that, in the presence of Zariski separation, it suffices to consider the
projections p : A{ — S.
Lemma 3.2.4. Let D* be a premotivic category of coefficients. Consider the following conditions:
(i) D* is homotopy invariant.

(ii) For every scheme S and integer n > 0, the inverse image p*, along the projection
p: Ag — S, is fully faithful.

(iii) For every scheme S, the inverse image p*, along the projection p : Ay — S, is fully
faithful.

Then the conditions (ii) and (iii) are equivalent. If D* satisfies the property of Zariski

separation, then (i) and (ii) are also equivalent.

Proof. For n > 0, the projection p : A§ — S can be written as a composite of n projections of
the form AL — X, for a scheme X. This demonstrates the equivalence between the conditions

(ii) and (iii).
For the equivalence between (i) and (ii), assume that D* satisfies Zariski separation. This

property (together with the smooth base change formula) implies that the condition of the
counit pgp* — id to be invertible, is Zariski-local in S. The conclusion follows. O

3.3. Localization. In this paragraph we introduce the localization property, and restate some
results of [CD09, §2.3] in our setting.

3.3.1. Let ¢ : Z — S be a closed immersion with quasi-compact open complement j : U < S. We
deduce some immediate consequences of the base change property (BCsmOOth) in this situation.

Considering the commutative square

which is cartesian because j is a monomorphism, we get:

Lemma 3.3.2. Let D* be a premotivic category of coefficients. Then for any quasi-compact
open immersion j : U <= S, the canonical morphisms

id — j* gy,
77 —id
are invertible.

In other words, the functors jy and j. are fully faithful.

3.3.3. Consider the exchange 2-morphism (2.8)
associated to the cartesian square
U —

U——

:

We have:
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Lemma 3.3.4. Let D* be an S'-stable category of coefficients. Let'S be a scheme with connected
components (Sq)a. Suppose that D(&) = 0 and the canonical functor D(S) — [, D(Sa) is
conservative. Then the following conditions are true:

(1) The canonical 2-morphism ~;,, is invertible for each o, where j, denotes the inclusion
Sa = S.

(1t) The canonical functor D(S) — [],D(Sa) is an equivalence.

Proof. For the first claim, it suffices by assumption to show that «;  is invertible after applying
any of the functors (jg)*. For o = 3, this follows from the fact that (j,)y and (ja )« are fully
faithful by [Chap. 2, Lemma 3.3.2]. For a # 3 this follows by left base change, using the
assumption that D(@) = 0.

For the second claim, we note that the functor in question admits a left adjoint
[ID(Sa) = D(S)

given by the assignment (Fa)a = @a(ja)i(Fa). One checks that the unit 2-morphism is
invertible, because (jqa)y are fully faithful ([Chap. 2, Lemma 3.3.2]), and the counit 2-morphism
is invertible, which can be checked after application of each the functors (jz)*. O

In particular, we obtain:

Corollary 3.3.5. If D* is S'-stable and Zariski separated, then it is additive if and only if
D(@) =0.

3.3.6. Considering the cartesian square

N

—

6]
[ ]
U

AN

wn

we get:

Lemma 3.3.7. Let D* be a premotivic category of coefficients. Suppose that the category D(2)
is trivial'. Then for any closed immersion i : Z — S with quasi-compact open complement
j U= 8§, the canonical morphisms

2z = "j3(F)  (F e D)),
JYis(F) mev (T €D(Z))

are invertible.

3.3.8. Consider the canonical commutative square

Ji(F) ——— F

! l

g0 () —— 1.0°(3)

for any object F € D(S).

1By this we mean the terminal category, with a unique object and a unique morphism.
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By [Chap. 2, Lemma 3.3.7] this induces a canonical commutative square
js*(F) —— F
(3.2) l l
Jjglev) —— i (F)
which we call the localization square associated to the pair (3, j).

Definition 3.3.9. Let i be a closed immersion with quasi-compact open complement. The
premotivic category of coefficients D* satisfies the localization property (Loc;) with respect to i,
if the following conditions hold:

(i) The category D(D) is trivial.

(ii) The functor i, is fully faithful.

(#ii) For every object F € D(S), the localization square (3.2) is cocartesian.

We say that D* satisfies the localization property (Loc) if it satisfies (Loc;) for all closed

immersions i with quasi-compact open complement.

3.3.10. Let D* be a premotivic category of coefficients satisfying S!-stability. In this case,
condition (iii) of the localization property is equivalent to exactness of the triangle

(3.3) Jii"(F) = F — i,.3%(F) (F e D(S)).

We also have the following reformulation:

Lemma 3.3.11. Let D* be a premotivic category of coefficients satisfying S'-stability. Then
the following conditions are equivalent:

(i) D* satisfies the localization property.
(ii) The category D(D) is trivial, and for any closed immersion i : Z — S with quasi-compact

open complement j : U — S, the functor i, is fully faithful and the pair (j*,i*) is conservative.

Proof. Suppose D* satisfies the localization property. To show that (j*,i*) is conservative, it
suffices by S!-stability to show that if F is a object of D(S) such that j*(F) = 0 and i*(F) = 0,
then F = 0. This follows immediately from the exactness of the triangle (3.3).

Conversely, suppose condition (ii) holds. It suffices to show that, for each object F € D(S),
the canonical morphism ¢ in the commutative triangle

F il ii*(F)
X /

Cofib(jyj*(F) = F)

is invertible. By assumption, it suffices to show it it becomes invertible after applying either of
the functors j* or i*.
Applying j*, we get
J* Cofib(j,j*(F) —+ F) = 0
by [Chap. 2, Lemma 3.3.2], and
Jrd"(F) =0
by [Chap. 2, Lemma 3.3.7].

Applying i*, we see that  becomes an isomorphism since i, is fully faithful, and ¥ becomes
an isomorphism by [Chap. 2, Lemma 3.3.7]. Hence the conclusion follows. O
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3.3.12. The localization property already implies left-adjointability along closed immersions and
(smooth, closed)-base change, which is a big step towards (smooth, proper)-biadjointability:

Lemma 3.3.13. Let D* be a premotivic category of coefficients satisfying S'-stability and
localization. Then D* is (smooth, closed)-biadjointable.

Proof. For weak left-adjointability (Adj.jesed)s let @ : Z < S be a closed immersion and define a
functor i* : D(S) — D(Z) by the formula

(3.4) i'(F) = i (Fib(F = 4.5°(F)))  (F € D(9)).
Write X = Fib(F — j,j*(F)). By [Chap. 2, Lemma 3.3.2] we have j*(X) = 0. From

the localization triangle it follows that i.i'(F) = i,i*(X) = K. We define a unit 2-morphism
7 :i4i' — id by the canonical morphism i,i'(F) = KX — F.

By [Chap. 2, Lemma 3.3.7] we have i'i,(F) = i*(Fib(i.F — j.j*i.F)) = F. We define the
counit € : F — i'i,(F) = F to be the identity.

It is straightforward to verify that n and e verify the triangle identities defining an adjunction
()

For the properties (BCelosed); (Pr0jcjosed), and (BCEmOth) "the proof is exactly the same as

closed
in the case of motivic spectra; see Corollaries 7.5.6, 7.6.4, 7.7.2. O

In particular, by right transposition from the localization triangle (3.3)
Jgi*(F) = F = id(F) (T eD(S)),
we obtain another exact triangle
(3.5) i (F) = F = 5.5 (F) (FeD(S)).
3.3.14. Another indication of the strength of the localization property is the observation that it
forces Nisnevich separation.

Lemma 3.3.15. Let D* be a premotivic category of coefficients satisfying S'-stability and
localization. Then D* satisfies the property of Nisnevich separation (and hence a fortiori Zariski
separation).
Proof. Tt suffices to show that for every Nisnevich square Q
VxglU ——V
| b
U—71 S,

with p étale of finite presentation and j a quasi-compact open immersion, the pair of functors
(j*,p*) is conservative.

By definition of Nisnevich square, there exists a closed immersion ¢ : Z < S complementary
to j such that in the cartesian square

V(TJVXSZ
p J{q

K2

the morphism ¢ is invertible.

By the localization property, the pair (j*,4*) is conservative. This is equivalent to the
conservativity of the pair (5%, ¢*i*) = (5%, k*p*), so the conclusion follows. O
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3.3.16. Recall that a nil-immersion is a closed immersion that induces an isomorphism on
underlying reduced classical schemes.
Definition 3.3.17. A category of coefficients D* satisfies topological invariance if for any

nil-immersion i, the adjunction (i*,i.) is an equivalence.

In particular, this property means that the category of coefficients D* does not distinguish
between a scheme S and its underlying classical scheme S¢ (or even its underlying reduced
classical scheme Scj yed)-

Topological invariance follows automatically from the stronger property of localization:

Lemma 3.3.18. Let D* be a premotivic category of coefficients which is pointed and satisfies
the localization property. Then D* satisfies topological invariance.

Proof. This follows immediately from the localization property applied to the closed immersion
i, whose open complement is empty. O

3.4. Thom stability.

3.4.1. Let D* be a premotivic category of coefficients. Let S be a scheme, p : X — S a smooth
morphism of finite presentation, and s : S < X a section. Assume that p is separated, so that s
is a closed immersion.

The Thom suspension endofunctor associated to the pair (p, s) is defined as
thom,, s := pys, : D(S) — D(S).
If D* is weakly right-adjointable with respect to closed immersions, then it admits a right
adjoint, the Thom desuspension endofunctor
thom?* := s'p* : D(S) — D(S).

When there is no risk of confusion, we will also write thomy s := thom,, s and thom™/S :=
thom?® (when the latter is defined).

3.4.2. Let (p,s) be a pair as above and assume that p is étale. Then the closed immersion s
is also an open immersion, i.e. it is an inclusion of a connected component. Assuming D* is
additive, we may apply [Chap. 2, Lemma 3.3.4] to deduce that there is a canonical 2-isomorphism
id = pysy — thom,, ;. That is:

Lemma 3.4.3. Let D* be an additive category of coefficients. Let p be a separated étale
morphism of finite presentation with a section s. Then the Thom suspension functor thom, s
coincides with the identity endofunctor of D(S).

3.4.4. Let p: X — S a smooth separated morphism of finite presentation, and s : S — X a
section.

Given a morphism of schemes f : T — S, consider the base change square

Yy 25X

b
T8
Let t: T < Y be the induced section of ¢: Y — T.

Then we have:
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Lemma 3.4.5. Suppose that D* is right-adjointable along closed immersions. Then there are
canonical isomorphisms

thomg ¢ o f* = f* o thom,, 4,
thom?* o f, = f. o thom®".

Proof. The second isomorphism is the right transpose of the first. The first follows from left
base change along smooth morphisms and right base change along closed immersions: we have

I Dess = q1g" 55 = gyt f™. U
3.4.6. Suppose that there is a commutative diagram of schemes

S

N

Sty

IR

S—%sx 249

(3.6)

where p (resp. p/, ¢’) is a smooth separated morphism with section s (resp. s, t').

If the square is cartesian, the exchange 2-morphism gst, — pgs. ((2.8)) gives rise to a
canonical 2-morphism pygyt.t, — pus*qét; by horizontal composition.

In other words, we have a canonical 2-morphism

(3.7) thom,, s — thomy, ¢ o thomg 4.

By construction, we have:
Lemma 3.4.7. If D* satisfies bidirectional base change along (smooth, closed), then the 2-
morphism (3.7) is invertible.

For example, this is true in the presence of localization ([Chap. 2, Lemma 3.3.13]).

By [Chap. 2, Lemma 3.4.3] we further deduce:

Corollary 3.4.8. Assume that D* satisfies the localization property. Suppose we have a
commutative diagram as in (3.6). If q is étale, then there is a canonical 2-isomorphism

thOHlp/’S/ — thOmpvs.
Proof. By 3.4.7 it suffices to show that the endofunctor thom, , is the identity. Since ¢’ is étale

this follows from [Chap. 2, Lemma 3.4.3], which applies because Lemmas 3.3.15 and 3.3.5 ensure
that D* is additive. d

3.4.9. Suppose now that we have a commutative diagram
S \

(3.8) E "5 E
AN
S—— E'"—— S

where E, E' and E” are vector bundles over a scheme S, and the square is cartesian. (The
unlabelled arrows < are the zero sections of the respective vector bundles.)
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In this case the 2-morphism (3.7) takes the form
(39) thOInE/S — thOmEu/S o thOmE//S.
By 3.4.7 this is invertible when D* satisfies bidirectional base change along the pair (smooth, closed).

3.4.10. We introduce the following property:

Definition 3.4.11. The premotivic category of coefficients D* is Thom stable if the following
condition holds:

(Thom) For any pair (p,s) with p: X — S a smooth separated morphism and s : S — X a
section, the Thom transformation thomy g is an equivalence.

In practice, it suffices to consider the Thom transformation associated to the affine line:

Lemma 3.4.12. Let D* be a premotivic category of coefficients satisfying the localization
property. Then the following conditions are equivalent:

(i) D* is Thom stable.

(ii) For every scheme S and every vector bundle p : E — S, the Thom transformation
thomg/g is an equivalence.

(i4i) For every scheme S, the Thom transformation thomay /s s an equivalence.

Proof. Recall that the localization property implies (smooth, closed)-biadjointability ([Chap. 2,
Lemma 3.3.13)) and Zariski separation ([Chap. 2, Lemma 3.3.15]).

Let p: X — S be a separated smooth morphism of finite presentation with a section s. We
begin by noting that the property of thom, s being an equivalence is Zariski-local on S. Indeed,
by bidirectional base change along the pair (smooth, closed) we obtain canonical isomorphisms

j* othom,, , = thom, 4,
thom? * o j* = j* o thom””®
where p’ : X xg U — U is the base change of p and s’ is the induced section of p’. Hence we
conclude by Zariski separation.

Now we show that (iii) implies (ii). By the above observation, claim (ii) reduces to the
statement that the functor thom Az/s 18 an equivalence for each n > 0. But by (3.9) this functor
is identified with the n-fold composite (thom Al /s)°", so we conclude by assumption.

Next we show that (ii) implies (i). By [Chap. 1, Lemma 9.3.4], there exists a morphism
q: X — Ng /x to the conormal bundle of s, which is étale on some open neighbourhood U — X
of the image of s, such that the section s is the base change of the zero section of N%.

Let Sg := S xx U denote the base change of S to U, and X := X xgSg the base change of
X to Sp. Using [Chap. 2, Corollary 3.4.8] we obtain (arguing as in [CD09, Prop. 2.4.11]), a
2-isomorphism

thOIIlXO/S0 = thomNéo/XO /So

and we conclude by (ii). O

3.4.13. Let D* be a premotivic category of coefficients. Let p : X — S be a smooth separated
morphism of finite presentation, and s : S < X a section.

Definition 3.4.14. We define the Thom object associated to the pair (p,s) as the object
Th(p, s) := thomy, s(1g) := pys.(1s)
in D(S).



104 2. THE FORMALISM OF SIX OPERATIONS

If p: E — S is a vector bundle with zero section s, we write Thg(E) := Th(p, s) for the
associated Thom object.

3.4.15. Using the projection formulas, one observes:

Lemma 3.4.16. Suppose that D* satisfies the right projection formula along closed immersions
(Proj?™°d). Let S be a scheme, p : X — S a smooth separated morphism, and s : S — X a
section. Then we have canonical isomorphisms

thom, s(F) = Th(p, s) ®s F,
thom®*(F) = Homg(Th(p, ), F)
for each object F € D(S).

Proof. The second isomorphism is the right transpose of the first. For the first, we use the
left projection formula along smooth morphisms and the right projection formula along closed
immersions to write

Pp5<(1s) @ T = py(s:(1s) @ ™ (F)) = py(s+(1s @s 8™p™(F)) = ppsas™p™(F) = pys«(I),
as desired (since p o s = id). O
3.4.17. Assume that we have a commutative diagram as in (3.8). In this case, the canonical
2-morphism (3.9) takes the form
(3.10) Ths(E) — Ths(E//) ®s Ths(E/).

Recall that this is invertible as soon as D* satisfies bidirectional base change with respect to
the pair (smooth, closed).

3.4.18. Putting the above together, we see that in practice, in order to force Thom stability it
suffices to invert the Thom sheaves Thg(A}).

Corollary 3.4.19. Let D* be a premotivic category of coefficients satisfying the localization
property. Then the following conditions are equivalent:

(i) D* is Thom stable.

(ii) For every scheme S, every smooth separated morphism p : X — S, and every section
s:S = X, the Thom object Th(p, s) € D(S) is invertible with respect to the monoidal product
Xs-

(iii) For every scheme S and every vector bundle p : E — S with zero section s : S — E, the
Thom object Thg(E) € D(S) is invertible with respect to the monoidal product ®g.

(iv) For every scheme S, the Thom object Ths(AL) € D(S) is invertible with respect to the

monoidal product ®g.

Proof. By Lemmas 3.3.13 and 3.3.15, D* satisfies the right projection formula along closed
immersions, and Zariski separation. Hence we may apply Lemmas 3.4.12 and 3.4.16 to conclude.
O

We deduce that, in the presence of localization, Thom stability is stronger than S'-stability.

Corollary 3.4.20. Let D* be a premotivic category of coefficients satisfying localization, Thom
stability, and homotopy invariance. Then D* is S'-stable.

Proof. The proof is exactly as in the case of motivic spectra [Chap. 1, Lemma 8.3.3]. O

3.5. Motivic categories of coefficients.
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3.5.1. The following is the natural analogue of the notion of motivic triangulated category of
[CDO09]:

Definition 3.5.2. A premotivic category of coefficients D* is motivic if it satisfies the properties
of homotopy invariance (Htp), Thom stability (Thom), and localization (Loc).

3.5.3. Assume that all schemes in the category Sch are quasi-compact and quasi-separated.
In [Chap. 2, Paragraph 3.7] we will prove:

Theorem 3.5.4. Let D* be a compactly generated category of coefficients. If D* is motivic,
then it is (open, proper)-biadjointable.

3.6. Comparison with the axiomatic of Cisinski—Deglise.

3.6.1. Recall from [Lurl6, Thm. 1.1.2.15] (c¢f. [GR16, Book-1.1, 5.1.2]) that for a stable
(00, 1)-category C, the underlying (1,1)-category (C)°'% admits a triangulated structure.

Let Arenastab denote the full subcategory of Arena spanned by stable arenas. Let Cattri¥
denote the (very large) (2,1)-category of large triangulated categories, triangulated functors,
and invertible triangulated natural transformations. We get:

Lemma 3.6.2. The canonical functor of (00, 1)-categories Arenastab — (1,1)-Cat" , given on
objects by the assignment C > (C)°™", lifts to a functor

(3.11) Arenastab — CattriV
along the forgetful functor Cattri¥ — (1, 1)—Catv.

Proof. Since the target of the desired functor is a (2, 1)-category, it is equivalent by adjunction
to define a functor of (2, 1)-categories from the underlying (2, 1)-category of Arenastab, i.e. to
define the functor on objects, 1-morphisms, and (invertible) 2-morphisms.

For this, it suffices to note that an exact functor of stable (oo, 1)-categories induces a
triangulated functor on triangulated categories, which follows directly upon inspection of the
definition of the triangulated structure on (C)°rd®. O

Further, when C is symmetric monoidal, the underlying (1, 1)-category (C)°™" is triangulated
monoidal. That is, it admits a symmetric monoidal structure which is compatible with the
triangulated structure, in the sense that the monoidal product is exact and commutes with
arbitrary coproducts in each argument. This follows from [Lurl6, Rem. 2.1.2.20] and the fact
that the monoidal product on C commutes with arbitrary small colimits in each argument.

Let Arenamonstab denote the full subcategory of Arenamon spanned by stable symmetric
monoidal arenas. Let Cattrimon" denote the (very large) (2, 1)-category of large triangulated
monoidal categories, symmetric monoidal triangulated functors, and invertible symmetric
monoidal triangulated natural transformations. We have:

Lemma 3.6.3. The functor (3.11) lifts to a functor of (0o, 1)-categories
(3.12) Arenamonstab — Cattrimon"

along the forgetful functor Cattrimon™ — Cattri¥ .

3.6.4. Given a premotivic category of coefficients
D* : (Sch)°? — Arenastab,
we can restrict to the (1, 1)-category of classical schemes and obtain a functor

(D*) 2 (Sch™)°P — Arenastab,
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which clearly defines a premotivic category of coefficients (D*)°! on S ch®.

It is clear that, if D* is motivic, then so is its restriction (D*)¢!.

3.6.5. If D* is S'-stable, then by post-composing (D*)! with the functor (3.11), we obtain a
functor of (2, 1)-categories

(D*)Cl’tlri : (Schd)‘)p — CattriV
Since the functor D* : (Sch)°P — Arenastab is symmetric monoidal, (D*)b* factors through
Cattrimon” by [Chap. 2, Lemma 3.6.3].

It is immediate from the definitions that the functor (D*)°:*! defines a premotivic triangu-
lated category in the sense of [CD09], which is motivic whenever (D*)°! is. That is:
Lemma 3.6.6. Let D* be an S'-stable premotivic category of coefficients D*. Then the following
hold:

(i) The induced functor (D*)* defines a premotivic triangulated category.

(ii) If D* is a motivic category of coefficients, then the premotivic triangulated category
(D*)°! satisfies the localization, homotopy and stability properties (in the sense of loc. cit).

3.6.7. Conversely, the following lemma allows us to deduce properties of the motivic category
of coefficients (D*)°! from the corresponding properties of the motivic triangulated category
(D*)cl,tri.

Lemma 3.6.8. Let D* be a motivic category of coefficients. Then the motivic category of
coefficients (D*)! has weak right-adjointability (resp. right base change, the right projection
formula, bidirectional base change) if and only if the premotivic triangulated category (D*)cbtr
has the adjoint property (resp. the proper base change formula, the proper projection formula,
the support property) in the sense of [CD0Y].

Proof. The properties in question involve statements of the following two forms:

(1) A certain exact functor of stable (0o, 1)-categories is an equivalence.

(2) A certain exact functor of stable arenas commutes with small colimits (i.e. admits a
right adjoint).

(3) A certain 2-morphism between functors of (0o, 1)-categories is invertible.

For statements of the first form it is sufficient to recall that an exact functor of stable (0o, 1)-

categories is an equivalence if and only if it induces a triangulated equivalence of underlying
(1,1)-categories.

For statements of the second form, let u be an exact functor of stable (0o, 1)-categories. For
u to commute with small colimits, it suffices that it commutes with arbitrary direct sums, a
property which can be checked on underlying (1, 1)-categories.

Statements of the third form can be checked object-wise in the underlying (1,1)-categories.
O

3.6.9. Write open,, (resp. proper,) for the intersection of the class open (resp. proper) with
the subcategory Sch® C Sch of classical schemes.

Recall the following theorem of Ayoub [Ayo07], which is the classical version of [Chap. 2,
Theorem 3.5.4]:

Theorem 3.6.10. Let (D*)! be a motivic category of coefficients which is compactly generated.
Then (D*)°! is (open,,, proper,,)-biadjointable.

2Le., the category D(S) is compactly generated for each classical scheme S.
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Proof. For noetherian (classical) bases, the claim follows from [CD09, Thms. 2.4.26 and 2.4.28],
using [Chap. 2, Lemma 3.6.8] to translate.

To generalize to the case of quasi-compact quasi-separated (classical) bases, one may use
the argument in the proof of [Hoy15, Prop. C.13], which clearly works mutatis mutandis in the
setting of any compactly generated motivic category of coefficients. O

3.7. Biadjointability of motivic categories of coefficients.

3.7.1. In this paragraph we will prove [Chap. 2, Theorem 3.5.4], which states that any (compactly
generated) motivic category of coefficients is (open, proper)-biadjointable.

Our starting point is the result of Ayoub, [Chap. 2, Theorem 3.6.10], which says that (D*)!
is (open,,, proper,, )-biadjointable.

By the localization property, we also have that D* satisfies topological invariance ([Chap. 2,
Lemma 3.3.18]) and (smooth, closed)-biadjointability ([Chap. 2, Lemma 3.3.13]).

The following sequence of lemmas will then demonstrate (open, proper)-biadjointability.

3.7.2. First, we check that (Adj,ope,) is equivalent to (Adj,roper,):

Lemma 3.7.3. Let D* be a premotivic category of coefficients satisfying S'-stability, topological
mwvariance, and weak right-adjointability along closed. Then D* is weakly right-adjointable along
a morphism f if and only if (D*)° is weakly right-adjointable along fe.

Proof. Consider the commutative square

By topological invariance, the adjunction (k*, k) is an equivalence. By weak closed-adjointability,
iy (resp. k.) admits a right adjoint 7' (resp. k').

If (fa)' is a right adjoint to (fe)«, then it is easy to verify that f' := k.(fq)'' is a right
adjoint to f..

Conversely if f' is a right adjoint to f., then (fq)' := k'f'i, is a right adjoint to (fu)s. O

The next lemma says that (BCproper) can be checked on underlying classical schemes:

Lemma 3.7.4. Let D* be an S'-stable premotivic category of coefficients satisfying topological
mwvariance and right base change along closed. Then D* satisfies right base change along a
morphism g if and only if (D*)°' satisfies right base change along ge).

Proof. Suppose there is a cartesian square of schemes

(3.13) lg, lg
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with g and ¢’ proper. Consider the induced cartesian square

T, s,
(3.14) J{gél J{gcl

To 25 Sy
in the category of classical schemes.

We will show that the exchange 2-morphism
a: frg.— () (f)
is invertible if and only if the exchange 2-morphism
B (fe)"(ge)s = (ger) (f4)"

is invertible.

Consider the commutative cube

T, — M T/
fél Tc] T
h—— % S'
fe
S ——m—— S
By topological invariance, the adjunctions (i*,4.), (¢"*,4), (k*, k), (K™, kL) are all equivalences.

We claim that there is a canonical isomorphism of natural transformations
B =k xax (i),

where * denotes horizontal composition, from which the claim follows.

Indeed, note that there is a canonical identification k* f* g, (¢')« = k* f*ix(ge1)s = (fo1)*1*0x(ge1)« =

(fcl)*(gcl)*-

On the other hand, there is a canonical identification k*(¢").(f')* (')« = k*(¢")« (k') (f1)* =
E* ki (g2))« (fL)* = (92)«(f1)* by the closed base change formula for i'.

The fact that the induced natural transformation

E* o (i ) (fa)” (gcl)**}(gél)*(fcll)*

coincides with « follows by careful inspection from the constructions of the exchange transfor-
mations « and (3, respectively. U
The following lemma says that (Proj,,,pe) can be checked on underlying classical schemes:

Lemma 3.7.5. Let D* be an S'-stable premotivic category of coefficients satisfying topological
inwvariance and the right projection formula along closed. Then D* satisfies the right projection
formula along a morphism f if and only if (D*)! satisfies the right projection formula along fe..

Proof. We will show that the canonical morphism

a(F,9) : fo(Fr [1(9)) = £(F) @5 §
is invertible for all objects F € D(T) and § € D(S), if and only if the canonical morphism

6(?0; 90) : (fcl)*(gjO & (fcl)*(SO)) — (fcl)*(ffO) ®s 90
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is invertible for all objects Fy € D(T¢;) and Gy € D(Sq).

Consider the commutative square

By topological invariance the adjunctions (¢*,i.) and (k*, k.) are equivalences.

In particular, given objects Fy € D(T.;) and G € D(Sa), we can write Fo = k*(F) and
G0 =i*(9), where F := k.(Fo) and G := i.(Go), respectively. The claim follows from the fact
that, for each Fy and Gg, the morphism «(F, G) is canonically identified with 4. (3(Fo, Go))-

Indeed, note that we have i, ((fo1)«(Fo®(fe1)*(G0))) = [+ (FR*9), and i ((fa1)«(Fo)®G0) =
1 ((fa)k*(F) @ 1*(9)) = f(F) ® G by the right projection formula for 1. O

3.171.6. Finally, the following lemma says that (BC5/.,) can be checked on underlying classical
schemes:

Lemma 3.7.7. Let D* be an S'-stable premotivic category of coefficients satisfying topological
invariance and bidirectional base change along the pair (open,closed). Then D* satisfies bidirec-
tional base change along (open, proper) if and only if (D*)! satisfies bidirectional base change

along (open,,, proper,,).

Proof. Suppose we have a cartesian square of schemes

P
(3.15)

./

—
I

He— <
MR

with f and f’ proper, and j and j’ open immersions, and let

Vcl A Ucl

(3.16) Jjél ljcl

T —2 Sy

denote the induced cartesian square in the category of classical schemes.

We will show that the exchange 2-morphism

a ]ti(fl)* — f*(]/)ﬁ

is invertible if and only if the exchange 2-morphism

B+ (Ge)s(fa)« = (fa)«(Ga)s

is invertible.
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Consider the commutative cube

-/
Jel
Va ————— Ta

N fcl\
T

fh \% 7 l
f )
Ucl *“Cl Scl f
B J S

Using (open, closed)-base change and the fact that the adjunction ((k")*, (k').) is an equiva-
lence by topological invariance, one sees that there is a canonical isomorphism of 2-morphisms

a =i, xBx* (k)

from which the claim follows. O
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4. THE FORMALISM OF SIX OPERATIONS

4.1. Schematic correspondences.

4.1.1. Let C be an (oo, 1)-category, and let ¢ and ¢’ be two objects in C.

A correspondence from ¢ to ¢ is a diagram

d% c
Js
C,

in C. We will also write such a datum as a triple (d, f, g).

Let (d, f,g) and (d', f’,¢g’) be two correspondences from ¢ to ¢’. A morphism of correspon-
dences from (d, f, g) to (d’, f',¢') is a morphism h : d — d’' in C together with a commutative

diagram
d f
m
g d L) c
%
c/
in C.

From [GR16, Book-V.1], we have:

Proposition 4.1.2. There is an (00, 2)-category whose objects are objects of C, 1-morphisms
are correspondences, and 2-morphisms are morphisms of correspondences.

4.1.3. Let Arrsch = Arrows(Sch) denote the (oo, 1)-category of morphisms in Sch. To avoid
ambiguity, we will use the term schematic arrow when we want to view a morphism of schemes
as an object of Arrsch.

Definition 4.1.4. A schematic correspondence is a correspondence in the category of schematic
arrows.

We will write Corrsch for the (oo, 2)-category of schematic correspondences, and Corrsch
for its underlying (oo, 1)-category.

4.1.5. Let horiz and vert be classes of morphisms in Arrsch. Given schematic arrows f and
f', a schematic correspondence (g, a, 8) from f to f' is of type (horiz, vert) if the morphism «
(resp. () is contained in horiz (resp. vert).

Let Corrschy,oriz.vert (resp. Corrschhoriz;vert) denote the sub-(oo, 2)-category of Corrsch
(resp. sub-(co, 1)-category of Corrsch) where the 1-morphisms are spanned by correspondences
of type (horiz, vert).

Let diag be another class of morphisms in Arrsch. We will write Corrsch® (resp.
Corrschzlo‘:zz,vert) for the sub-(o0, 2)-category of Corrsch (resp. of Corrschyopiz:pert) Where
the 2-morphisms are spanned by morphisms of correspondences (g, o, 8) — (¢', &/, 3’) such that

the underlying morphism of schematic arrows v : g — ¢’ is contained in diag.
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4.1.6. Given a property of morphisms of schemes (P), we will say that a morphism of schematic
arrows « : f — ¢ has the property (P) if it is of the form

T-1.5
o
S ——5

where the morphism f has the property (P).

For example, we may speak of morphisms of schematic arrows being open immersions,
proper, separated, or of finite type. Let open (resp. proper, sep, all) denote® the class of open
immersions (resp. proper morphisms, separated morphisms of finite type, all morphisms) of
schematic arrows.

proper

In the sequel, a special role will be played by the (oo, 2)-category Corrschsep:all, where all

denotes the class of all morphisms of schematic arrows.
4.2. The extension theorem.

4.2.1. Recall from [Chap. 0, Paragraph 3.4] the (oo, 2)-category Arenamod of pairs (O, C),
with O a symmetric monoidal arena and C an O-module arena.

The following important theorem will be a straightforward application of the technology
developed in [GR16]:

Theorem 4.2.2. Suppose that every scheme S in Sch is quasi-compact and quasi-separated.
Let D* be an (open, proper)-biadjointable category of coefficients defined on Sch. Then there
exists a unique extension of D* to a symmetric monoidal functor of (00, 2)-categories

(4.1) D; : Corrsch”*’S' — (Arenamod)>°P.

sep;

Combining this with [Chap. 2, Theorem 3.5.4], we obtain immediately:

Corollary 4.2.3. Suppose that every scheme S in Sch is quasi-compact and quasi-separated.
Let D* be a motivic category of coefficients defined on Sch. Then there exists a unique extension
of D* to a symmetric monoidal functor of (00, 2)-categories

(4.2) Dy : Corrschl "} — (Arenamod)?°P.
The rest of this section will be devoted to the proof of [Chap. 2, Theorem 4.2.2].

4.2.4. Before discussing the extension to schematic correspondences, we start by noting that we
can extend any category of coefficients D* to a functor of (0o, 1)-categories

(4.3) D, rsen : (Arrsch)°? — Arenamod
defined as the composite
(Arrsch)®® = Arrows((Sch)?) — Arrows(Arenamon) — Arenamod.

The first functor is obtained from D* : (Sch)°? — Arenamon by applying Arrows(—). The
second is the canonical functor of (3.10), which sends a symmetric monoidal morphism of arenas
u: O — O to the pair (0O, 0’), where O’ is viewed as an O-module via u.

3This is a slight abuse of notation, but it will always be clear from the context whether we are referring to a
class of morphisms in Sch or Arrsch.
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4.2.5. The functor D%, .., can be described informally as follows:

On objects, it sends a schematic arrow f : T — S to the pair (D(S), D(T)), where D(T) is
viewed as a D(S)-module via the symmetric monoidal functor f*.

On morphisms, it sends a morphism of schematic arrows o : g — f, given by a commutative
square

to the morphism
defined by the pair (g%, (f/)*).

4.3. Biadjointability on schematic arrows. In this paragraph, we show that the extension
of D* to schematic arrows, i.e. the functor
D rsen  (Arrsch)°? — Arenamod,
still satisfies the open-base change and proper-base change properties.
Another way to say this is as follows. One can consider the evident analogues of the
properties weakly left-adjointable, left base change, weakly right-adjointable, right base change,

and bidirectional base change, for functors valued in an arbitrary 2-category. It turns out that
the operation D* — DY ., preserves them, for any biadjointable D*.

4.3.1. The following verifies the properties of weak left-adjointability and left base change for
D:k‘\m“sch:

Lemma 4.3.2. (i) For every open immersion B : j — ids of schematic arrows given by a
commutative square

J

N,
H

— 8,

the induced morphism
8" :=Dlrrsen(B) : (D(S),D(S)) = (D(S),D(T))
admits a left adjoint By in the 2-category Arenamod.
(i) For every cartesian square of schematic arrows
j—
(4.4) lﬁ, lﬁ
idgy —%— idg
with 8 and 8’ open immersions, the induced commutative square in Arenamod

Dj\r'rsch(f) 044) Djﬁlrrsch(f/)

LB* l(ﬁ/)*

* N @) S, .
DAT’I‘SCh(]) B— DArrsch(j/)7

obtained by applying the functor D%, ... is vertically left-adjointable.

Dually, we have:
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Lemma 4.3.3. (i) For every proper morphism « : f — idg of schematic arrows, given by a
commutative square

T8
]
S ——5,

the induced morphism
a”: (D(S),D(S)) — (D(S),D(T))
admits a right adjoint oy in the 2-category Arenamod.

(ii) For every cartesian square of schematic arrows
g -2 yg
bl
f/ L> f7
with o and o proper, the induced commutative square in Arenamod

Djﬁlrrsch(f) —— Djélrrsch(f/)
| |@r
Dj\rrsch (g) — Djﬁlr'rsch(gl)a

obtained by applying the functor D%, . . . is horizontally right-adjointable.

Finally, we have the bidirectional base change property:

Lemma 4.3.4. For all cartesian squares of schematic arrows

g L’> iz

b

g——1f
with $ and 8’ open immersions, and o and o' proper, the induced commutative square in
Arenamod

(D, D7) (/) “ (D, D*)(g)

lpn lp{i
(D*,D*)(f) —— (D*,D")(¢"),
obtained by applying the functor D%, ... and vertically passing to left adjoints, is horizontally
right-adjointable.
4.3.5. All three of these lemmas are purely formal exercises. We will only prove the first

statement; the second is completely dual, and the third is also similar.

Let 8 :j — f be an open immersion given by a commutative square as above. Recall that
the morphism
A*: (D(8), D(S)) — (D(S), D(T))
is defined by the pair (idp(g),j*).
We define a morphism in Arenamod
By - (D(S), D(T)) — (D(S), D(S))
given by the triple (idp(s), ji)-
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We will show that Sy is left adjoint to 3*, by constructing unit and counit morphisms
satisfying the triangle identities.
4.3.6. Let us define the unit 2-morphism 7 : id(p(s),p(T)) — 8" B4 in Arenamod.
This is the 2-morphism
1 : (idps), idp(r)) = (idp(s), )
by the data:

e The natural transformation idp(sy — idps) given by the identity.
e The D(S)-linear natural transformation idp(ty — j*j; given by the unit of the adjunc-

tion (]ﬁ,]*)
4.3.7. Let us define the counit 2-morphism ¢ : 338" — id(p(s),p(s)) in Arenamod.
This is the 2-morphism in Arenamod
e : (idp(s),jsi™) — (idp(s), idp(s))
by the data:

e The natural transformation idpg) — idp(s) given by the identity.
e The D(S)-linear natural transformation jyj* — idps) given by the counit of the
adjunction (jy, j*).

4.3.8. Tt is immediate that the data of the 2-morphisms 7 and ¢ defines an adjunction (8, 3*)
in the 2-category Arenamod.

4.3.9. We next verify the base change property, i.e. statement (ii) of [Chap. 2, Lemma 4.3.2].

Let B :j — idp(g) and ' : j* — idp(s/) be given by commutative squares

T 2,5 T/ J*/> S’
7
S =—— 8, =

respectively.

Let o : idp(s) — idps) and o’ : j' — j be given by commutative squares

g —g T Isy
A
S ——5, T 2,5,

respectively.

Assuming that the square (4.4) is cartesian, we have to show that the exchange 2-morphism
(4.5) (8)(e')” = By
is invertible.

Note that (4.4) induces a cartesian square of schemes

Ly

(4.6) lg | lf

T 8.
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4.3.10. The composite a*fy is given by the pair (f*, f*jy).
The composite (3')s(a’)* is given by the pair (f*, (j)sg%).
The 2-morphism (4.5) is given by the following data:
e The natural transformation f* — f* given by the identity.

e The D(S)-linear transformation f*j; — (j')g* given by the exchange transformation
associated to the cartesian square (4.6).

By the axiom (BC°P") it follows that this 2-morphism is invertible.

4.4. The extension theorem, proof. In this paragraph we will prove [Chap. 2, Theo-
rem 4.2.2].

4.4.1. We begin with the functor
D ysen : (Arrsch)®® — Arenamod
defined in (4.3).

The first part of the construction of the 2-functor Dy (4.2) consists of the extension of
D%, e, to a symmetric monoidal functor of (0o, 2)-categories

(4.7 D; : Corrschissen;an — Arenamod.

o

We will obtain this extension by using [GR16, Book-V.1, Thm. 3.2.2(b)], which applies because
of the following two observations:

(1) The triple (all, open, open) satisfies the conditions of [GR16, Book-V.1, 1.1.1]. That is
to say, the class of open immersions of schematic arrows is stable under base change and satisfies
the 2-of-3 property. This follows immediately from the respective properties for the class of
open immersions of schemes.

(2) The functor D%, ., satisfies the right Beck-Chevalley condition [GR16, Book-V.1,
Def. 3.1.5] with respect to the class of open immersions. This is the content of [Chap. 2,
Lemma 4.3.2].

4.4.2. Next, we want to extend D} (4.7) to a symmetric monoidal functor of (oo, 2)-categories

(4.8) D; : Corrsch” P\ — (Arenamod)*°P.

sep;
For this, we flip the directions of the 1- and 2-morphisms in D; to obtain a 2-functor

(4.9) Corrsch’) — (Arenamod)'%?°P,

all;open

In order to apply [GR16, Book V.1, Thm. 5.2.4], we need to check the following:

(1) The classes proper and sep satisfy the conditions of [GR16, Book-V.1, 1.1.1 and 5.1.1].
That is to say, the class proper is stable under base change, and the class sep is stable under
base change and satisfies the 2-of-3 property.

(2) The classes open and proper satisfy the condition of [GR16, Book-V.1, 5.1.2]. That is
to say, every morphism in the intersection of the classes open and proper is a monomorphism.
This follows immediately from the corresponding fact for the classes open and proper in Sch.
In fact, recall that every open immersion is a monomorphism.

(3) The classes proper, open and all satisfy the condition of [GR16, Book-V.1, 5.1.3]. That
is to say, for every morphism 7 of schematic arrows which is separated and of finite type, the
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category of commutative diagrams

f——— g,

N

with 8 an open immersion and « proper, is contractible. This follows immediately from the
corresponding statement for morphisms of schemes, which is [Chap. 0, Proposition 6.3.4].

(4) The functor D% ., satisfies the left Beck-Chevalley condition of [GR16, Book-V.1,
Def. 3.1.2] with respect to the class of proper morphisms. This is the content of [Chap. 2,
Lemma 4.3.3].

(5) The functor (4.9) satisfies the condition of [GR16, Book V.1, 5.2.2]. This is the content
of [Chap. 2, Lemma 4.3.4].

Hence we may apply [GR16, Thm. 5.2.4] to obtain a 2-functor

hproper )1&2—0p )

Corrsch}), ep

— (Arenamod

By flipping the directions of 1-morphisms we obtain the 2-functor

D; : Corrsch®°?S" — (Arenamod)?°P
sep;all

which is the extension desired.
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5. EXAMPLE: THE STABLE MOTIVIC HOMOTOPY CATEGORY
5.1. The functor SH". In this paragraph we will define the stable motivic homotopy category,

introduced in Chapter 1, as a category of coefficients in the sense of [Chap. 2, Sect. 2.

Here the notation Sch will be used for the category of quasi-compact quasi-separated
schemes.

5.1.1. Let Corrsch{°P} denote the (oo, 2)-category of schematic correspondences (see [Chap.

2, Paragraph 4.1]). In this section we will show:

Theorem 5.1.2. The assignment S — SH(S) lifts to a symmetric monoidal functor of (oo, 2)-
categories

(5.1) SH; : Corrsch?”’°’{" — (Arenamod)*°P.

sep;

5.1.3. We begin by lifting the assignment S — SH(S) to a motivic category of coefficients.

Consider the canonical functor
Arrows(Sch) — Sch

sending a morphism of schemes f : T — S to its target S.

By abstract nonsense (see [GR16, Chap. 1.1]), this is a cartesian fibration which corresponds,
via straightening/unstraightening, to the presheaf of categories (Sch)°? — (00, 1)-Cat given
object-wise by the assignment S — Schg.

5.1.4. Let Sm denote the full subcategory of Arrows(Sch) spanned by smooth morphisms of
schemes. Since smoothness is stable under base change, it is easily verified that the composite

Sm — Arrows(Sch) — Sch

is also a cartesian fibration.

This corresponds by straightening/unstraightening to a presheaf of categories (Sch)°P —
(00, 1)-Cat given object-wise by the assignment

S— Sm/s

5.1.5. Applying the canonical functor C — P(C) object-wise, we obtain a presheaf of arenas
(Sch)°P — Arena given on objects by the assignment

S — Spe(S)
and on morphisms by f — f*.

Note that this lifts to a presheaf of symmetric monoidal arenas: each category Spc(S) is
cartesian monoidal, and the morphisms f* are symmetric monoidal (i.e. commute with finite
products).t

Hence we have a functor

(Sch)°® — Arenamon.

4Note that in the cartesian monoidal case, symmetric monoidality is a property of functors, not a structure.
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5.1.6. Consider the category of pairs (C,S), with C an arena and S an essentially small set of
morphisms; see [Chap. 0, Paragraph 2.6].

Since the classes of Nisnevich covers and A'-projections are stable under base change,
respectively, one sees that the functor (Sch)°? — Arenamon lifts to (commutative monoids in)
this category of pairs, where we send a scheme S to the category Spe(S) together with the small
set of Nisnevich-local and A!-local isomorphisms.

Applying the symmetric monoidal functor given by object-wise localization of pairs (see loc.
cit.), we obtain a functor (Sch)°? — Arenamon given on object by the assignment

S s H(S).

5.1.7. Applying the functor C — C, object-wise, we obtain a functor (Sch)°? — Arenamon
given on objects by the assignment

S H(S)a.

5.1.8. Fix a family of pointed fibred spaces (Ts)s as in [Chap. 1, Paragraph 5.3]. The properties
of the “formal inversion” H(S)e — SH(S) studied in [Rob14] provide a functor

(Sch)®® — Arenamod,
or equivalently a symmetric monoidal functor
(Sch)°P? — Arena,

given on objects by the assignment
S — SH(S).
See especially §9.1 of loc. cit..

This is the category of coefficients desired.

5.2. The 2-functor SH|. In this paragraph we obtain the 2-functor SH; encoding the
formalism of six operations on motivic spectra.

5.2.1. First, we have that the category of coefficients SH* is left-adjointable along smooth
morphisms. This was demonstrated in [Chap. 1, Sect. 6].

Hence SH* is premotivic.

5.2.2. We have homotopy invariance for SH* by construction, using point (iii) of [Chap. 2,
Lemma 3.2.4].

5.2.3. We now fix the family (Ts)s = (P§)s, and write SH(S) = SHp1(S). Recall that P
denotes, by abuse of notation, the pointed motivic space (Mg(P}), 00).

Recall also that there is a canonical identification P§ = Thg(A}) for each S (see [Chap. 1,
Corollary 8.2.4]). Hence we have Thom stability for SH* by construction, using point (iv) of
[Chap. 2, Corollary 3.4.19].

5.2.4. We have the localization property for SH*; this was the main result of Chapter 1 (see
[Chap. 1, Paragraph 7.4]).

5.2.5. In summary, the category of coefficients SH* is motivic. By [Chap. 2, Corollary 4.2.3],
we obtain the symmetric monoidal functor of (oo, 2)-categories

(5.2) SH : Corrschl b — (Arenamod)*°P.

desired, a unique extension of SH*, encoding the formalism of six operations on motivic spectra.
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