The Grothendieck–Riemann–Roch theorem

 
 

Time and place

Sommersemester 2018
Thursdays 16-18, M 103

Description

This lecture course will be centred around the celebrated Grothendieck–Riemann–Roch theorem, proven by A. Grothendieck in 1957. Along the way, we will see how it can be naturally generalized to the setting of derived algebraic geometry. Finally, we will also discuss how the derived Grothendieck-Riemann-Roch formula gives rise to formulas for the virtual fundamental class originally predicted by M. Kontsevich.

References

  • P. Berthelot, A. Grothendieck, L. Illusie, Théorie des intersections et théorème de Riemann-Roch (SGA 6).
  • W. Fulton, Intersection theory.
  • J. Lurie, Spectral algebraic geometry.

Contact

adenullel.khanull[email protected]nullhematik.uni-renullgensburg.dnulle
federnullico.binull[email protected]nullhematik.uni-renullgensburg.dnulle