The Grothendieck–Riemann–Roch theorem


Time and place

Sommersemester 2018
Thursdays 16-18, M 103


This lecture course will be centred around the celebrated Grothendieck–Riemann–Roch theorem, proven by A. Grothendieck in 1957. Along the way, we will see how it can be naturally generalized to the setting of derived algebraic geometry. Finally, we will also discuss how the derived Grothendieck-Riemann-Roch formula gives rise to formulas for the virtual fundamental class originally predicted by M. Kontsevich.


  • P. Berthelot, A. Grothendieck, L. Illusie, Théorie des intersections et théorème de Riemann-Roch (SGA 6).
  • W. Fulton, Intersection theory.
  • J. Lurie, Spectral algebraic geometry.


adenullel.khanull[email protected]nullhematik.uni-renullgensburg.dnulle
federnullico.binull[email protected]nullhematik.uni-renullgensburg.dnulle