Here are some papers and notes about sheaves on derived spaces/stacks and their cohomology and Borel–Moore homology.

Contains most of the derived geometry prerequisites for the below papers. (Joint with Rydh.)

The main paper constructing Borel–Moore homology, cohomology, and fundamental classes of derived stacks. Preliminary draft.

The formalism that the above paper builds on. Joint with Déglise and Jin.

A K-theoretic counterpart to the cohomology and Borel–Moore homology stuff above.

An improved version of chapter 2 of my thesis. Preliminary draft, some more material to be added later.

Topological invariance. Joint with Elmanto.

Papers dealing specifically with the stable motivic homotopy category.

Discusses the role of virtual classes in motivic homotopy theory. Joint with Elmanto, Hoyois, Sosnilo, and Yakerson.

Subsumes part (chapter 1) of my thesis.

Thomason’s excess intersection formula for derived stacks.

Projective bundle and blow-up formulas.

Excision for Milnor and blow-up squares. Joint with Bachmann, Ravi, and Sosnilo.

Homotopy invariant K-theory and the Bass construction over the sphere spectrum. Joint with Cisinski.